Flink从入门到精通之-05 DataStream API

Flink从入门到精通之-05 DataStream API

我们在第 2 章介绍 Flink 快速上手时,曾编写过一个简单的词频统计(WordCount)程序,相信读者已经对 Flink 的编程方式有了基本的认识。接下来,我们就将开始大量的代码练习,详细了解用于 Flink 程序开发的 API 用法。

Flink 有非常灵活的分层 API 设计,其中的核心层就是 DataStream/DataSet API。由于新版本已经实现了流批一体,DataSet API 将被弃用,官方推荐统一使用 DataStream API 处理流数据和批数据。由于内容较多,我们将会用几章的篇幅来做详细讲解,本章主要介绍基本的DataStream API 用法。
DataStream(数据流)本身是 Flink 中一个用来表示数据集合的类(Class),我们编写的Flink 代码其实就是基于这种数据类型的处理,所以这套核心 API 就以 DataStream 命名。对于批处理和流处理,我们都可以用这同一套 API 来实现。
DataStream 在用法上有些类似于常规的 Java 集合,但又有所不同。我们在代码中往往并不关心集合中具体的数据,而只是用 API 定义出一连串的操作来处理它们;这就叫作数据流的“转换”(transformations)。
一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下几部分构成,如图 5-1 所示:
⚫ 获取执行环境(execution environment)
⚫ 读取数据源(source)
⚫ 定义基于数据的转换操作(transformations)
⚫ 定义计算结果的输出位置(sink)
⚫ 触发程序执行(execute)
其中,获取环境和触发执行,都可以认为是针对执行环境的操作。所以本章我们就从执行环境、数据源(source)、转换操作(transformation)、输出(sink)四大部分,对常用的 DataStream API 做基本介绍。
在这里插入图片描述

文章目录

  • Flink从入门到精通之-05 DataStream API
    • 5.1 执行环境(Execution Environment)
      • 5.1.1 创建执行环境
      • 5.1.2 执行模式(Execution Mode)
      • 5.1.3 触发程序执行
    • 5.2 源算子(Source)
      • 5.2.1 准备工作
      • 5.2.2 从集合中读取数据
      • 5.2.3 从文件读取数据
      • 5.2.4 从 Socket 读取数据
      • 5.2.5 从 Kafka 读取数据
      • 5.2.6 自定义 Source
      • 5.2.7 Flink 支持的数据类型
    • 5.3 转换算子(Transformation)
      • 5.3.1 基本转换算子
      • 5.3.2 聚合算子(Aggregation)
      • 5.3.3 用户自定义函数(UDF)
      • 5.3.4 物理分区(Physical Partitioning)
    • 5.4 输出算子(Sink)
      • 5.4.1 连接到外部系统
      • 5.4.2 输出到文件
      • 5.4.3 输出到 Kafka
      • 5.4.4 输出到 Redis
      • 5.4.5 输出到 Elasticsearch
      • 5.4.6 输出到 MySQL(JDBC)
      • 5.4.7 自定义 Sink 输出
    • 5.5 本章总结


5.1 执行环境(Execution Environment)

Flink 程序可以在各种上下文环境中运行:我们可以在本地 JVM 中执行程序,也可以提交到远程集群上运行。
不同的环境,代码的提交运行的过程会有所不同。这就要求我们在提交作业执行计算时,首先必须获取当前 Flink 的运行环境,从而建立起与 Flink 框架之间的联系。只有获取了环境上下文信息,才能将具体的任务调度到不同的 TaskManager 执行。

5.1.1 创建执行环境

编 写 Flink 程 序 的 第 一 步 , 就 是 创 建 执 行 环 境 。 我 们 要 获 取 的 执 行 环 境 , 是StreamExecutionEnvironment 类的对象,这所有 Flink 程序的基础。在代码中创建执行环境的方式,就是调用这个类的静态方法,具体有以下三种。
1. getExecutionEnvironment
最简单的方式,就是直接调用 getExecutionEnvironment 方法。它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了 jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境。也就是说,这个方法会根据当前运行的方式,自行决定该返回什么样的运行环境。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

这种“智能”的方式不需要我们额外做判断,用起来简单高效,是最常用的一种创建执行环境的方式。
2. createLocalEnvironment
这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的 CPU 核心数。

StreamExecutionEnvironment localEnv = StreamExecutionEnvironment.createLocalEnvironment();

3. createRemoteEnvironment
这个方法返回集群执行环境。需要在调用时指定 JobManager 的主机名和端口号,并指定要在集群中运行的 Jar 包。

StreamExecutionEnvironment remoteEnv = StreamExecutionEnvironment .createRemoteEnvironment(
 "host", // JobManager 主机名
 1234, // JobManager 进程端口号
 "path/to/jarFile.jar" // 提交给 JobManager 的 JAR 包
); 

在获取到程序执行环境后,我们还可以对执行环境进行灵活的设置。比如可以全局设置程序的并行度、禁用算子链,还可以定义程序的时间语义、配置容错机制。关于时间语义和容错机制,我们会在后续的章节介绍。

5.1.2 执行模式(Execution Mode)

上节中我们获取到的执行环境,是一个 StreamExecutionEnvironment,顾名思义它应该是做流处理的。那对于批处理,又应该怎么获取执行环境呢?在之前的 Flink 版本中,批处理的执行环境与流处理类似,是调用类 ExecutionEnvironment的静态方法,返回它的对象:

// 批处理环境
ExecutionEnvironment batchEnv = ExecutionEnvironment.getExecutionEnvironment();
// 流处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

基于 ExecutionEnvironment 读入数据创建的数据集合,就是 DataSet;对应的调用的一整套转换方法,就是 DataSet API。这些我们在第二章的批处理 word count 程序中已经有了基本了解。而从 1.12.0 版本起,Flink 实现了 API 上的流批统一。DataStream API 新增了一个重要特性:可以支持不同的“执行模式”(execution mode),通过简单的设置就可以让一段 Flink 程序在流处理和批处理之间切换。这样一来,DataSet API 也就没有存在的必要了。
⚫ 流执行模式(STREAMING)
这是 DataStream API 最经典的模式,一般用于需要持续实时处理的无界数据流。默认情况下,程序使用的就是 STREAMING 执行模式。
⚫ 批执行模式(BATCH)
专门用于批处理的执行模式, 这种模式下,Flink 处理作业的方式类似于 MapReduce 框架。对于不会持续计算的有界数据,我们用这种模式处理会更方便。
⚫ 自动模式(AUTOMATIC)
在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式。
1. BATCH 模式的配置方法
由于 Flink 程序默认是 STREAMING 模式,我们这里重点介绍一下 BATCH 模式的配置。主要有两种方式:
(1)通过命令行配置
bin/flink run -Dexecution.runtime-mode=BATCH …在提交作业时,增加 execution.runtime-mode 参数,指定值为 BATCH。
(2)通过代码配置

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.BATCH);

在代码中,直接基于执行环境调用 setRuntimeMode 方法,传入 BATCH 模式。建议: 不要在代码中配置,而是使用命令行。这同设置并行度是类似的:在提交作业时指定参数可以更加灵活,同一段应用程序写好之后,既可以用于批处理也可以用于流处理。而在代码中硬编码(hard code)的方式可扩展性比较差,一般都不推荐。
2. 什么时候选择 BATCH 模式
我们知道,Flink 本身持有的就是流处理的世界观,即使是批量数据,也可以看作“有界流”来进行处理。所以 STREAMING 执行模式对于有界数据和无界数据都是有效的;而 BATCH模式仅能用于有界数据。看起来 BATCH 模式似乎被 STREAMING 模式全覆盖了,那还有必要存在吗?我们能不能所有情况下都用流处理模式呢?当然是可以的,但是这样有时不够高效。我们可以仔细回忆一下 word count 程序中,批处理和流处理输出的不同:在 STREAMING模式下,每来一条数据,就会输出一次结果(即使输入数据是有界的);而 BATCH 模式下,只有数据全部处理完之后,才会一次性输出结果。最终的结果两者是一致的,但是流处理模式会将更多的中间结果输出。在本来输入有界、只希望通过批处理得到最终的结果的场景下,STREAMING 模式的逐个输出结果就没有必要了。所以总结起来,一个简单的原则就是:用 BATCH 模式处理批量数据,用 STREAMING模式处理流式数据。因为数据有界的时候,直接输出结果会更加高效;而当数据无界的时候, 我们没得选择——只有 STREAMING 模式才能处理持续的数据流。当然,在后面的示例代码中,即使是有界的数据源,我们也会统一用 STREAMING 模式处理。这是因为我们的主要目标还是构建实时处理流数据的程序,有界数据源也只是我们用来测试的手段。

5.1.3 触发程序执行

有了执行环境,我们就可以构建程序的处理流程了:基于环境读取数据源,进而进行各种转换操作,最后输出结果到外部系统。需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当 main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据——因为数据可能还没来。Flink 是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”(lazy execution)。所以我们需要显式地调用执行环境的 execute()方法,来触发程序执行。execute()方法将一直等待作业完成,然后返回一个执行结果(JobExecutionResult)。

env.execute();

5.2 源算子(Source)

在这里插入图片描述
创建环境之后,就可以构建数据处理的业务逻辑了,如图 5-2 所示,本节将主要讲解 Flink的源算子(Source)。想要处理数据,先得有数据,所以首要任务就是把数据读进来。Flink 可以从各种来源获取数据,然后构建 DataStream 进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。Flink 代码中通用的添加 source 的方式,是调用执行环境的 addSource()方法:

DataStream<String> stream = env.addSource(...);

方法传入一个对象参数,需要实现 SourceFunction 接口;返回 DataStreamSource。这里的DataStreamSource 类继承自 SingleOutputStreamOperator 类,又进一步继承自 DataStream。所以很明显,读取数据的 source 操作是一个算子,得到的是一个数据流(DataStream)。这里可能会有些麻烦:传入的参数是一个“源函数”(source function),需要实现SourceFunction 接口。这是何方神圣,又该怎么实现呢?自己去实现它显然不会是一件容易的事。好在 Flink 直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的 source function,通常情况下足以应对我们的实际需求。接下来我们就详细展开讲解。

5.2.1 准备工作

为了更好地理解,我们先构建一个实际应用场景。比如网站的访问操作,可以抽象成一个三元组(用户名,用户访问的 urrl,用户访问 url 的时间戳),所以在这里,我们可以创建一个类 Event,将用户行为包装成它的一个对象。Event 包含了以下一些字段,如表 5-1 所示:
在这里插入图片描述

具体代码如下:

import java.sql.Timestamp;
public class Event {
 public String user;
 public String url;
 public Long timestamp;
 public Event() {
 }
 public Event(String user, String url, Long timestamp) {
 this.user = user;
 this.url = url;
 this.timestamp = timestamp;
 }
 @Override
 public String toString() {
 return "Event{" +
 "user='" + user + '\'' +
 ", url='" + url + '\'' +
 ", timestamp=" + new Timestamp(timestamp) +
 '}';
 }
}

这里需要注意,我们定义的 Event,有这样几个特点:
⚫ 类是公有(public)的
⚫ 有一个无参的构造方法
⚫ 所有属性都是公有(public)的
⚫ 所有属性的类型都是可以序列化的
Flink 会把这样的类作为一种特殊的 POJO 数据类型来对待,方便数据的解析和序列化。另外我们在类中还重写了 toString 方法,主要是为了测试输出显示更清晰。关于 Flink 支持的数据类型,我们会在后面章节做详细说明。我们这里自定义的 Event POJO 类会在后面的代码中频繁使用,所以在后面的代码中碰到Event,把这里的 POJO 类导入就好了。
注:Java 编程比较好的实践是重写每一个类的 toString 方法,来自 Joshua Bloch 编写的《Effective Java》。

5.2.2 从集合中读取数据

最简单的读取数据的方式,就是在代码中直接创建一个 Java 集合,然后调用执行环境的fromCollection 方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。

public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 ArrayList<Event> clicks = new ArrayList<>();
 clicks.add(new Event("Mary","./home",1000L));
 clicks.add(new Event("Bob","./cart",2000L));
 DataStream<Event> stream = env.fromCollection(clicks);
stream.print();
 env.execute();
}

我们也可以不构建集合,直接将元素列举出来,调用 fromElements 方法进行读取数据:

DataStreamSource<Event> stream2 = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
);

5.2.3 从文件读取数据

真正的实际应用中,自然不会直接将数据写在代码中。通常情况下,我们会从存储介质中获取数据,一个比较常见的方式就是读取日志文件。这也是批处理中最常见的读取方式。

DataStream<String> stream = env.readTextFile("clicks.csv");

说明:
⚫ 参数可以是目录,也可以是文件;
⚫ 路径可以是相对路径,也可以是绝对路径;
⚫ 相对路径是从系统属性 user.dir 获取路径: idea 下是 project 的根目录, standalone 模式下是集群节点根目录;
⚫ 也可以从 hdfs 目录下读取, 使用路径 hdfs://…, 由于 Flink 没有提供 hadoop 相关依赖, 需要 pom 中添加相关依赖:

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>2.7.5</version>
 <scope>provided</scope>
</dependency>

5.2.4 从 Socket 读取数据

不论从集合还是文件,我们读取的其实都是有界数据。在流处理的场景中,数据往往是无界的。这时又从哪里读取呢?
一个简单的方式,就是我们之前用到的读取 socket 文本流。这种方式由于吞吐量小、稳定性较差,一般也是用于测试。

DataStream<String> stream = env.socketTextStream("localhost", 7777);

5.2.5 从 Kafka 读取数据

那对于真正的流数据,实际项目应该怎样读取呢?
Kafka 作为分布式消息传输队列,是一个高吞吐、易于扩展的消息系统。而消息队列的传输方式,恰恰和流处理是完全一致的。所以可以说 Kafka 和 Flink 天生一对,是当前处理流式数据的双子星。在如今的实时流处理应用中,由 Kafka 进行数据的收集和传输,Flink 进行分析计算,这样的架构已经成为众多企业的首选,如图 5-3 所示。
在这里插入图片描述
略微遗憾的是,与 Kafka 的连接比较复杂,Flink 内部并没有提供预实现的方法。所以我们只能采用通用的 addSource 方式、实现一个 SourceFunction 了。好在Kafka与Flink确实是非常契合,所以Flink官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者 FlinkKafkaConsumer,它就是用来读取 Kafka 数据的SourceFunction。
所以想要以 Kafka 作为数据源获取数据,我们只需要引入 Kafka 连接器的依赖。Flink 官方提供的是一个通用的 Kafka 连接器,它会自动跟踪最新版本的 Kafka 客户端。目前最新版本只支持 0.10.0 版本以上的 Kafka,读者使用时可以根据自己安装的 Kafka 版本选定连接器的依赖版本。这里我们需要导入的依赖如下。

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
 <version>${flink.version}</version>
</dependency>

然后调用 env.addSource(),传入 FlinkKafkaConsumer 的对象实例就可以了。

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;
public class SourceKafkaTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 Properties properties = new Properties();
 properties.setProperty("bootstrap.servers", "hadoop102:9092");
 properties.setProperty("group.id", "consumer-group");
 properties.setProperty("key.deserializer", 
"org.apache.kafka.common.serialization.StringDeserializer");
 properties.setProperty("value.deserializer", 
"org.apache.kafka.common.serialization.StringDeserializer");
 properties.setProperty("auto.offset.reset", "latest");
 DataStreamSource<String> stream = env.addSource(new 
FlinkKafkaConsumer<String>(
 "clicks",
 new SimpleStringSchema(),
 properties
 ));
 stream.print("Kafka");
 env.execute();
 }
}

创建 FlinkKafkaConsumer 时需要传入三个参数:
⚫ 第一个参数 topic,定义了从哪些主题中读取数据。可以是一个 topic,也可以是 topic列表,还可以是匹配所有想要读取的 topic 的正则表达式。当从多个 topic 中读取数据时,Kafka 连接器将会处理所有 topic 的分区,将这些分区的数据放到一条流中去。
⚫ 第二个参数是一个 DeserializationSchema 或者 KeyedDeserializationSchema。Kafka 消息被存储为原始的字节数据,所以需要反序列化成 Java 或者 Scala 对象。上面代码中使用的 SimpleStringSchema,是一个内置的 DeserializationSchema,它只是将字节数组简单地反序列化成字符串。DeserializationSchema 和 KeyedDeserializationSchema 是公共接口,所以我们也可以自定义反序列化逻辑。
⚫ 第三个参数是一个 Properties 对象,设置了 Kafka 客户端的一些属性。

5.2.6 自定义 Source

大多数情况下,前面的数据源已经能够满足需要。但是凡事总有例外,如果遇到特殊情况,我们想要读取的数据源来自某个外部系统,而 flink 既没有预实现的方法、也没有提供连接器,又该怎么办呢?
那就只好自定义实现 SourceFunction 了。接下来我们创建一个自定义的数据源,实现 SourceFunction 接口。主要重写两个关键方法:run()和 cancel()。
⚫ run()方法:使用运行时上下文对象(SourceContext)向下游发送数据;
⚫ cancel()方法:通过标识位控制退出循环,来达到中断数据源的效果。
代码如下:
我们先来自定义一下数据源:

import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Calendar;
import java.util.Random;
public class ClickSource implements SourceFunction<Event> {
 // 声明一个布尔变量,作为控制数据生成的标识位
private Boolean running = true;
 @Override
 public void run(SourceContext<Event> ctx) throws Exception {
 Random random = new Random(); // 在指定的数据集中随机选取数据
 String[] users = {"Mary", "Alice", "Bob", "Cary"};
String[] urls = {"./home", "./cart", "./fav", "./prod?id=1", 
"./prod?id=2"};
 while (running) {
 ctx.collect(new Event(
 users[random.nextInt(users.length)],
 urls[random.nextInt(urls.length)],
 Calendar.getInstance().getTimeInMillis()
 ));
 // 隔 1 秒生成一个点击事件,方便观测
Thread.sleep(1000);
 }
 }
 @Override
 public void cancel() {
 running = false;
 }
 }

这个数据源,我们后面会频繁使用,所以在后面的代码中涉及到 ClickSource()数据源,使用上面的代码就可以了。下面的代码我们来读取一下自定义的数据源。有了自定义的 source function,接下来只要调用 addSource()就可以了:

env.addSource(new ClickSource())

下面是完整的代码:

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class SourceCustom {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
//有了自定义的 source function,调用 addSource 方法
 DataStreamSource<Event> stream = env.addSource(new ClickSource());
 stream.print("SourceCustom");
 env.execute();
 }
 
}

这里要注意的是 SourceFunction 接口定义的数据源,并行度只能设置为 1,如果数据源设置为大于 1 的并行度,则会抛出异常。如下程序所示:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Random;
public class SourceThrowException {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.addSource(new ClickSource()).setParallelism(2).print();
 env.execute();
 }
}

输出的异常如下:

Exception in thread "main" java.lang.IllegalArgumentException: The parallelism of non parallel operator must be 1.

所以如果我们想要自定义并行的数据源的话,需要使用 ParallelSourceFunction,示例程序
如下:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import java.util.Random;
public class ParallelSourceExample {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.addSource(new CustomSource()).setParallelism(2).print();
 env.execute();
 }
 public static class CustomSource implements ParallelSourceFunction<Integer> 
{
 private boolean running = true;
 private Random random = new Random();
 @Override
 public void run(SourceContext<Integer> sourceContext) throws Exception {
 while (running) {
 sourceContext.collect(random.nextInt());
 }
 }
 @Override
 public void cancel() {
 running = false;
 }
 }
}

输出结果如下:

2> -686169047
2> 429515397
2> -223516288
2> 1137907312
2> -380165730
2> 2082090389

5.2.7 Flink 支持的数据类型

我们已经了解了 Flink 怎样从不同的来源读取数据。在之前的代码中,我们的数据都是定义好的 UserBehavior 类型,而且在 5.2.1 小节中特意说明了对这个类的要求。那还有没有其他更灵活的类型可以用呢?Flink 支持的数据类型到底有哪些?
1. Flink 的类型系统
为什么会出现“不支持”的数据类型呢?因为 Flink 作为一个分布式处理框架,处理的是以数据对象作为元素的流。如果用水流来类比,那么我们要处理的数据元素就是随着水流漂动的物体。在这条流动的河里,可能漂浮着小木块,也可能行驶着内部错综复杂的大船。要分布式地处理这些数据,就不可避免地要面对数据的网络传输、状态的落盘和故障恢复等问题,这就需要对数据进行序列化和反序列化。小木块是容易序列化的;而大船想要序列化之后传输,就需要将它拆解、清晰地知道其中每一个零件的类型。
为了方便地处理数据,Flink 有自己一整套类型系统。Flink 使用“类型信息”(TypeInformation)来统一表示数据类型。TypeInformation 类是 Flink 中所有类型描述符的基类。
它涵盖了类型的一些基本属性,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
2. Flink 支持的数据类型
简单来说,对于常见的 Java 和 Scala 数据类型,Flink 都是支持的。Flink 在内部,Flink对支持不同的类型进行了划分,这些类型可以在 Types 工具类中找到:
(1)基本类型
所有 Java 基本类型及其包装类,再加上 Void、String、Date、BigDecimal 和 BigInteger。
(2)数组类型
包括基本类型数组(PRIMITIVE_ARRAY)和对象数组(OBJECT_ARRAY)
(3)复合数据类型
⚫ Java 元组类型(TUPLE):这是 Flink 内置的元组类型,是 Java API 的一部分。最多25 个字段,也就是从 Tuple0~Tuple25,不支持空字段
⚫ Scala 样例类及 Scala 元组:不支持空字段
⚫ 行类型(ROW):可以认为是具有任意个字段的元组,并支持空字段
⚫ POJO:Flink 自定义的类似于 Java bean 模式的类
(4)辅助类型
Option、Either、List、Map 等
(5)泛型类型(GENERIC)
Flink 支持所有的 Java 类和 Scala 类。不过如果没有按照上面 POJO 类型的要求来定义,就会被 Flink 当作泛型类来处理。Flink 会把泛型类型当作黑盒,无法获取它们内部的属性;它们也不是由 Flink 本身序列化的,而是由 Kryo 序列化的。
在这些类型中,元组类型和 POJO 类型最为灵活,因为它们支持创建复杂类型。而相比之下,POJO 还支持在键(key)的定义中直接使用字段名,这会让我们的代码可读性大大增加。所以,在项目实践中,往往会将流处理程序中的元素类型定为 Flink 的 POJO 类型。
Flink 对 POJO 类型的要求如下:
⚫ 类是公共的(public)和独立的(standalone,也就是说没有非静态的内部类);
⚫ 类有一个公共的无参构造方法;
⚫ 类中的所有字段是 public 且非 final 的;或者有一个公共的 getter 和 setter 方法,这些方法需要符合 Java bean 的命名规范。所以我们看到,之前的 UserBehavior,就是我们创建的符合 Flink POJO 定义的数据类型。
3. 类型提示(Type Hints)
Flink 还具有一个类型提取系统,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于 Java 中泛型擦除的存在,在某些特殊情况下(比如 Lambda 表达式中),自动提取的信息是不够精细的——只告诉 Flink 当前的元素由“船头、船身、船尾”构成,根本无法重建出“大船”的模样;这时就需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。为了解决这类问题,Java API 提供了专门的“类型提示”(type hints)。回忆一下之前的 word count 流处理程序,我们在将 String 类型的每个词转换成(word,count)二元组后,就明确地用 returns 指定了返回的类型。因为对于 map 里传入的 Lambda 表达式,系统只能推断出返回的是 Tuple2 类型,而无法得到 Tuple2<String, Long>。只有显式地告诉系统当前的返回类型,才能正确地解析出完整数据。

.map(word -> Tuple2.of(word, 1L))
.returns(Types.TUPLE(Types.STRING, Types.LONG));

这是一种比较简单的场景,二元组的两个元素都是基本数据类型。那如果元组中的一个元素又有泛型,该怎么处理呢?
Flink 专门提供了 TypeHint 类,它可以捕获泛型的类型信息,并且一直记录下来,为运行时提供足够的信息。我们同样可以通过.returns()方法,明确地指定转换之后的 DataStream 里元素的类型。

returns(new TypeHint<Tuple2<Integer, SomeType>>(){})

5.3 转换算子(Transformation)

在这里插入图片描述
数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个 DataStream 转换为新的 DataStream,如图 5-4 所示。一个 Flink 程序的核心,其实就是所有的转换操作,它们决定了处理的业务逻辑。
我们可以针对一条流进行转换处理,也可以进行分流、合流等多流转换操作,从而组合成复杂的数据流拓扑。在本节中,我们将重点介绍基本的单数据流的转换,多流转换的内容我们将在后续章节展开。

5.3.1 基本转换算子

首先我们来介绍一些基本的转换算子,它们的概念和使用想必读者不会陌生。
1. 映射(map)
map 是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流。简单来说,就是一个“一一映射”,消费一个元素就产出一个元素,如图 5-5 所示。
在这里插入图片描述
我们只需要基于 DataStrema 调用 map()方法就可以进行转换处理。方法需要传入的参数是接口 MapFunction 的实现;返回值类型还是 DataStream,不过泛型(流中的元素类型)可能改变。
下面的代码用不同的方式,实现了提取 Event 中的 user 字段的功能。

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransMapTest {
 public static void main(String[] args) throws Exception{
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> stream = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 // 传入匿名类,实现 MapFunction
 stream.map(new MapFunction<Event, String>() {
 @Override
 public String map(Event e) throws Exception {
 return e.user;
 }
 });
 // 传入 MapFunction 的实现类
 stream.map(new UserExtractor()).print();
 env.execute();
 }
 public static class UserExtractor implements MapFunction<Event, String> {
 @Override
 public String map(Event e) throws Exception {
 return e.user;
 }
 }
}

上面代码中,MapFunction 实现类的泛型类型,与输入数据类型和输出数据的类型有关。在实现 MapFunction 接口的时候,需要指定两个泛型,分别是输入事件和输出事件的类型,还需要重写一个 map()方法,定义从一个输入事件转换为另一个输出事件的具体逻辑。
另外,细心的读者通过查看 Flink 源码可以发现,基于 DataStream 调用 map 方法,返回的其实是一个 SingleOutputStreamOperator。

public <R> SingleOutputStreamOperator<R> map(MapFunction<T, R> mapper){}

这表示 map 是一个用户可以自定义的转换(transformation)算子,它作用于一条数据流上,转换处理的结果是一个确定的输出类型。当然,SingleOutputStreamOperator 类本身也继承自 DataStream 类,所以说 map 是将一个 DataStream 转换成另一个 DataStream 是完全正确的。
2. 过滤(filter)
filter 转换操作,顾名思义是对数据流执行一个过滤,通过一个布尔条件表达式设置过滤条件,对于每一个流内元素进行判断,若为 true 则元素正常输出,若为 false 则元素被过滤掉,
如图 5-6 所示。
在这里插入图片描述
进行 filter 转换之后的新数据流的数据类型与原数据流是相同的。filter 转换需要传入的参数需要实现 FilterFunction 接口,而 FilterFunction 内要实现 filter()方法,就相当于一个返回布尔类型的条件表达式。
下面的代码会将数据流中用户 Mary 的浏览行为过滤出来 。

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransFilterTest {
 public static void main(String[] args) throws Exception{
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> stream = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 // 传入匿名类实现 FilterFunction
 stream.filter(new FilterFunction<Event>() {
 @Override
 public boolean filter(Event e) throws Exception {
 return e.user.equals("Mary");
 }
 });
 // 传入 FilterFunction 实现类
 stream.filter(new UserFilter()).print();
 env.execute();
 }
 public static class UserFilter implements FilterFunction<Event> {
 @Override
 public boolean filter(Event e) throws Exception {
 return e.user.equals("Mary");
 }
 }
}

3. 扁平映射(flatMap)
flatMap 操作又称为扁平映射,主要是将数据流中的整体(一般是集合类型)拆分成一个一个的个体使用。消费一个元素,可以产生 0 到多个元素。flatMap 可以认为是“扁平化”(flatten)和“映射”(map)两步操作的结合,也就是先按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理,如图 5-7 所示。我们此前 WordCount 程序的第一步分词操作,就用到了flatMap。
在这里插入图片描述
同 map 一样,flatMap 也可以使用 Lambda 表达式或者 FlatMapFunction 接口实现类的方式来进行传参,返回值类型取决于所传参数的具体逻辑,可以与原数据流相同,也可以不同。flatMap 操作会应用在每一个输入事件上面,FlatMapFunction 接口中定义了 flatMap 方法,用户可以重写这个方法,在这个方法中对输入数据进行处理,并决定是返回 0 个、1 个或多个结果数据。因此 flatMap 并没有直接定义返回值类型,而是通过一个“收集器”(Collector)来指定输出。希望输出结果时,只要调用收集器的.collect()方法就可以了;这个方法可以多次调用,也可以不调用。所以 flatMap 方法也可以实现 map 方法和 filter 方法的功能,当返回结果是 0 个的时候,就相当于对数据进行了过滤,当返回结果是 1 个的时候,相当于对数据进行了简单的转换操作。
flatMap 的使用非常灵活,可以对结果进行任意输出,下面就是一个例子:

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class TransFlatmapTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> stream = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 stream.flatMap(new MyFlatMap()).print();
 env.execute();
 }
 public static class MyFlatMap implements FlatMapFunction<Event, String> {
 @Override
 public void flatMap(Event value, Collector<String> out) throws Exception 
{
 if (value.user.equals("Mary")) {
 out.collect(value.user);
 } else if (value.user.equals("Bob")) {
 out.collect(value.user);
 out.collect(value.url);
 }
 }
 }
}

5.3.2 聚合算子(Aggregation)

直观上看,基本转换算子确实是在“转换”——因为它们都是基于当前数据,去做了处理和输出。而在实际应用中,我们往往需要对大量的数据进行统计或整合,从而提炼出更有用的信息。比如之前 word count 程序中,要对每个词出现的频次进行叠加统计。这种操作,计算的结果不仅依赖当前数据,还跟之前的数据有关,相当于要把所有数据聚在一起进行汇总合并——这就是所谓的“聚合”(Aggregation),也对应着 MapReduce 中的 reduce 操作。
1. 按键分区(keyBy)
对于 Flink 而言,DataStream 是没有直接进行聚合的 API 的。因为我们对海量数据做聚合肯定要进行分区并行处理,这样才能提高效率。所以在 Flink 中,要做聚合,需要先进行分区;这个操作就是通过 keyBy 来完成的。

keyBy 是聚合前必须要用到的一个算子。keyBy 通过指定键(key),可以将一条流从逻辑上划分成不同的分区(partitions)。这里所说的分区,其实就是并行处理的子任务,也就对应着任务槽(task slot)。
基于不同的 key,流中的数据将被分配到不同的分区中去,如图 5-8 所示;这样一来,所有具有相同的 key 的数据,都将被发往同一个分区,那么下一步算子操作就将会在同一个 slot中进行处理了。
在这里插入图片描述
在内部,是通过计算 key 的哈希值(hash code),对分区数进行取模运算来实现的。所以这里 key 如果是 POJO 的话,必须要重写 hashCode()方法。keyBy()方法需要传入一个参数,这个参数指定了一个或一组 key。有很多不同的方法来指定 key:比如对于 Tuple 数据类型,可以指定字段的位置或者多个位置的组合;对于 POJO 类型,可以指定字段的名称(String);另外,还可以传入 Lambda 表达式或者实现一个键选择器(KeySelector),用于说明从数据中提取 key 的逻辑。
我们可以以 id 作为 key 做一个分区操作,代码实现如下:

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransKeyByTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> stream = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 // 使用 Lambda 表达式
 KeyedStream<Event, String> keyedStream = stream.keyBy(e -> e.user);
 // 使用匿名类实现 KeySelector
 KeyedStream<Event, String> keyedStream1 = stream.keyBy(new KeySelector<Event, String>() {
 @Override
 public String getKey(Event e) throws Exception {
 return e.user;
 }
 });
 env.execute();
 }
}

需要注意的是,keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为KeyedStream。KeyedStream 可以认为是“分区流”或者“键控流”,它是对 DataStream 按照key 的一个逻辑分区,所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。
KeyedStream 也继承自 DataStream,所以基于它的操作也都归属于 DataStream API。但它跟之前的转换操作得到的 SingleOutputStreamOperator 不同,只是一个流的分区操作,并不是一个转换算子。KeyedStream 是一个非常重要的数据结构,只有基于它才可以做后续的聚合操作(比如 sum,reduce);而且它可以将当前算子任务的状态(state)也按照 key 进行划分、限定为仅对当前 key 有效。关于状态的相关知识我们会在后面章节继续讨论。
2. 简单聚合
有了按键分区的数据流 KeyedStream,我们就可以基于它进行聚合操作了。Flink 为我们内置实现了一些最基本、最简单的聚合 API,主要有以下几种:
⚫ sum():在输入流上,对指定的字段做叠加求和的操作。
⚫ min():在输入流上,对指定的字段求最小值。
⚫ max():在输入流上,对指定的字段求最大值。
⚫ minBy():与 min()类似,在输入流上针对指定字段求最小值。不同的是,min()只计算指定字段的最小值,其他字段会保留最初第一个数据的值;而 minBy()则会返回包含字段最小值的整条数据。
⚫ maxBy():与 max()类似,在输入流上针对指定字段求最大值。两者区别与min()/minBy()完全一致。
简单聚合算子使用非常方便,语义也非常明确。这些聚合方法调用时,也需要传入参数;但并不像基本转换算子那样需要实现自定义函数,只要说明聚合指定的字段就可以了。指定字段的方式有两种:指定位置,和指定名称。对于元组类型的数据,同样也可以使用这两种方式来指定字段。需要注意的是,元组中字段的名称,是以 f0、f1、f2、…来命名的。
例如,下面就是对元组数据流进行聚合的测试:

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransTupleAggreationTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Tuple2<String, Integer>> stream = env.fromElements(
 Tuple2.of("a", 1),
 Tuple2.of("a", 3),
 Tuple2.of("b", 3),
 Tuple2.of("b", 4)
 );
 stream.keyBy(r -> r.f0).sum(1).print();
 stream.keyBy(r -> r.f0).sum("f1").print();
 stream.keyBy(r -> r.f0).max(1).print();
 stream.keyBy(r -> r.f0).max("f1").print();
 stream.keyBy(r -> r.f0).min(1).print();
 stream.keyBy(r -> r.f0).min("f1").print();
 stream.keyBy(r -> r.f0).maxBy(1).print();
 stream.keyBy(r -> r.f0).maxBy("f1").print();
 stream.keyBy(r -> r.f0).minBy(1).print();
 stream.keyBy(r -> r.f0).minBy("f1").print();
 env.execute();
 }
}

而如果数据流的类型是 POJO 类,那么就只能通过字段名称来指定,不能通过位置来指定了。

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransPojoAggregationTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> stream = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 stream.keyBy(e -> e.user).max("timestamp").print(); // 指定字段名称
 env.execute();
 }
}

简单聚合算子返回的,同样是一个 SingleOutputStreamOperator,也就是从 KeyedStream 又转换成了常规的 DataStream。所以可以这样理解:keyBy 和聚合是成对出现的,先分区、后聚合,得到的依然是一个 DataStream。而且经过简单聚合之后的数据流,元素的数据类型保持不变。
一个聚合算子,会为每一个key保存一个聚合的值,在Flink中我们把它叫作“状态”(state)。所以每当有一个新的数据输入,算子就会更新保存的聚合结果,并发送一个带有更新后聚合值的事件到下游算子。对于无界流来说,这些状态是永远不会被清除的,所以我们使用聚合算子,应该只用在含有有限个 key 的数据流上。
3. 归约聚合(reduce)
如果说简单聚合是对一些特定统计需求的实现,那么 reduce 算子就是一个一般化的聚合统计操作了。从大名鼎鼎的 MapReduce 开始,我们对 reduce 操作就不陌生:它可以对已有的数据进行归约处理,把每一个新输入的数据和当前已经归约出来的值,再做一个聚合计算。与简单聚合类似,reduce 操作也会将 KeyedStream 转换为 DataStream。它不会改变流的元素数据类型,所以输出类型和输入类型是一样的。
调用 KeyedStream 的 reduce 方法时,需要传入一个参数,实现 ReduceFunction 接口。接口在源码中的定义如下:

public interface ReduceFunction<T> extends Function, Serializable {
T reduce(T value1, T value2) throws Exception;
}

ReduceFunction 接口里需要实现 reduce()方法,这个方法接收两个输入事件,经过转换处理之后输出一个相同类型的事件;所以,对于一组数据,我们可以先取两个进行合并,然后再将合并的结果看作一个数据、再跟后面的数据合并,最终会将它“简化”成唯一的一个数据,这也就是 reduce“归约”的含义。在流处理的底层实现过程中,实际上是将中间“合并的结果”作为任务的一个状态保存起来的;之后每来一个新的数据,就和之前的聚合状态进一步做归约。
其实,reduce 的语义是针对列表进行规约操作,运算规则由 ReduceFunction 中的 reduce方法来定义,而在 ReduceFunction 内部会维护一个初始值为空的累加器,注意累加器的类型和输入元素的类型相同,当第一条元素到来时,累加器的值更新为第一条元素的值,当新的元素到来时,新元素会和累加器进行累加操作,这里的累加操作就是 reduce 函数定义的运算规则。然后将更新以后的累加器的值向下游输出。我们可以单独定义一个函数类实现 ReduceFunction 接口,也可以直接传入一个匿名类。当然,同样也可以通过传入 Lambda 表达式实现类似的功能。与简单聚合类似,reduce 操作也会将 KeyedStream 转换为 DataStrema。它不会改变流的元素数据类型,所以输出类型和输入类型是一样的。下面我们来看一个稍复杂的例子。
我们将数据流按照用户 id 进行分区,然后用一个 reduce 算子实现 sum 的功能,统计每个用户访问的频次;进而将所有统计结果分到一组,用另一个 reduce 算子实现 maxBy 的功能,记录所有用户中访问频次最高的那个,也就是当前访问量最大的用户是谁。

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransReduceTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 // 这里的 ClickSource()使用了之前自定义数据源小节中的 ClickSource()
 env.addSource(new ClickSource())
 // 将 Event 数据类型转换成元组类型
 .map(new MapFunction<Event, Tuple2<String, Long>>() {
 @Override
 public Tuple2<String, Long> map(Event e) throws Exception {
 return Tuple2.of(e.user, 1L);
 }
 })
 .keyBy(r -> r.f0) // 使用用户名来进行分流
 .reduce(new ReduceFunction<Tuple2<String, Long>>() {
 @Override
 public Tuple2<String, Long> reduce(Tuple2<String, Long> value1, Tuple2<String, Long> value2) throws Exception {
 // 每到一条数据,用户 pv 的统计值加 1
 return Tuple2.of(value1.f0, value1.f1 + value2.f1);
 }
 })
 .keyBy(r -> true) // 为每一条数据分配同一个 key,将聚合结果发送到一条流中.reduce(new ReduceFunction<Tuple2<String, Long>>() {
 @Override
 public Tuple2<String, Long> reduce(Tuple2<String, Long> value1, Tuple2<String, Long> value2) throws Exception {
 // 将累加器更新为当前最大的 pv 统计值,然后向下游发送累加器的值
 return value1.f1 > value2.f1 ? value1 : value2;
 }
 })
 .print();
 env.execute();
 }
}

reduce 同简单聚合算子一样,也要针对每一个 key 保存状态。因为状态不会清空,所以我们需要将 reduce 算子作用在一个有限 key 的流上。

5.3.3 用户自定义函数(UDF)

在前面的介绍我们可以发现,Flink 的 DataStream API 编程风格其实是一致的:基本上都是基于 DataStream 调用一个方法,表示要做一个转换操作;方法需要传入一个参数,这个参数都是需要实现一个接口。我们还可以扩展到 5.2 节讲到的 Source 算子,其实也是需要自定义类实现一个 SourceFunction 接口。我们能否从中总结出一些规律呢?
很容易发现,这些接口有一个共同特点:全部都以算子操作名称 + Function 命名,例如源算子需要实现 SourceFunction 接口,map 算子需要实现 MapFunction 接口,reduce 算子需要实现 ReduceFunction 接口。而且查看源码会发现,它们都继承自 Function 接口;这个接口是空的,主要就是为了方便扩展为单一抽象方法(Single Abstract Method,SAM)接口,这就是我们所说的“函数接口”——比如 MapFunction 中需要实现一个 map()方法,ReductionFunction中需要实现一个 reduce()方法,它们都是 SAM 接口。我们知道,Java 8 新增的 Lambda 表达式就可以实现 SAM 接口;所以这样的好处就是,我们不仅可以通过自定义函数类或者匿名类来实现接口,也可以直接传入 Lambda 表达式。这就是所谓的用户自定义函数(user-defined function,UDF)。接下来我们就对这几种编程方式做一个梳理总结。
1. 函数类(Function Classes)
对于大部分操作而言,都需要传入一个用户自定义函数(UDF),实现相关操作的接口,来完成处理逻辑的定义。Flink 暴露了所有 UDF 函数的接口,具体实现方式为接口或者抽象类,例如 MapFunction、FilterFunction、ReduceFunction 等。
所以最简单直接的方式,就是自定义一个函数类,实现对应的接口。之前我们对于 API的练习,主要就是基于这种方式。
下面例子实现了 FilterFunction 接口,用来筛选 url 中包含“home”的事件:

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransFunctionUDFTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> clicks = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 DataStream<Event> stream = clicks.filter(new FlinkFilter());
 stream.print();
env.execute();
 }
 public static class FlinkFilter implements FilterFunction<Event> {
 @Override
 public boolean filter(Event value) throws Exception {
 return value.url.contains("home");
 }
 }
}

当然还可以通过匿名类来实现 FilterFunction 接口:

DataStream<String> stream = clicks.filter(new FilterFunction<Event>() {
 @Override
 public boolean filter(Event value) throws Exception {
 return value.url.contains("home");
 }
});

为了类可以更加通用,我们还可以将用于过滤的关键字"home"抽象出来作为类的属性,调用构造方法时传进去。

DataStream<Event> stream = clicks.filter(new KeyWordFilter("home"));
public static class KeyWordFilter implements FilterFunction<Event> {
 private String keyWord;
 KeyWordFilter(String keyWord) { this.keyWord = keyWord; }
 @Override
 public boolean filter(Event value) throws Exception {
 return value.url.contains(this.keyWord);
 }
}

2. 匿名函数(Lambda)
匿名函数(Lambda 表达式)是 Java 8 引入的新特性,方便我们更加快速清晰地写代码。Lambda 表达式允许以简洁的方式实现函数,以及将函数作为参数来进行传递,而不必声明额外的(匿名)类。
Flink 的所有算子都可以使用 Lambda 表达式的方式来进行编码,但是,当 Lambda 表达式使用 Java 的泛型时,我们需要显式的声明类型信息。下例演示了如何使用 Lambda 表达式来实现一个简单的 map() 函数,我们使用 Lambda 表达式来计算输入的平方。在这里,我们不需要声明 map() 函数的输入 i 和输出参数的数据类型,因为 Java 编译器会对它们做出类型推断。

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class TransFunctionLambdaTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> clicks = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 //map 函数使用 Lambda 表达式,返回简单类型,不需要进行类型声明
 DataStream<String> stream1 = clicks.map(event -> event.url);
 stream1.print();
 
 env.execute();
 }
}

由于 OUT 是 String 类型而不是泛型,所以 Flink 可以从函数签名 OUT map(IN value) 的实现中自动提取出结果的类型信息。但是对于像 flatMap() 这样的函数,它的函数签名 void flatMap(IN value, Collector out) 被 Java 编译器编译成了 void flatMap(IN value, Collectorout),也就是说将 Collector 的泛型信息擦除掉了。这样 Flink 就无法自动推断输出的类型信息了。
我们来看一段代码:
// flatMap 使用 Lambda 表达式,抛出异常

DataStream<String> stream2 = clicks.flatMap((event, out) -> {
out.collect(event.url);
});
stream2.print();

如果执行程序,Flink 会抛出如下异常:

org.apache.flink.api.common.functions.InvalidTypesException: The generic type parameters of 'Collector' are missing.
In many cases lambda methods don't provide enough information for automatic type extraction when Java generics are involved.
An easy workaround is to use an (anonymous) class instead that implements the 'org.apache.flink.api.common.functions.FlatMapFunction' interface.
Otherwise the type has to be specified explicitly using type information.

在这种情况下,我们需要显式地指定类型信息,否则输出将被视为 Object 类型,这会导致低效的序列化。

// flatMap 使用 Lambda 表达式,必须通过 returns 明确声明返回类型
DataStream<String> stream2 = clicks.flatMap((Event event, Collector<String> out) -> {
out.collect(event.url);
}).returns(Types.STRING);
stream2.print();

当使用 map() 函数返回 Flink 自定义的元组类型时也会发生类似的问题。下例中的函数签名 Tuple2<String, Long> map(Event value) 被类型擦除为 Tuple2 map(Event value)。

 //使用 map 函数也会出现类似问题,以下代码会报错
DataStream<Tuple2<String, Long>> stream3 = clicks
.map( event -> Tuple2.of(event.user, 1L) );
stream3.print();

一般来说,这个问题可以通过多种方式解决:

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class ReturnTypeResolve {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 DataStreamSource<Event> clicks = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L)
 );
 // 想要转换成二元组类型,需要进行以下处理
 // 1) 使用显式的 ".returns(...)"
 DataStream<Tuple2<String, Long>> stream3 = clicks .map( event -> Tuple2.of(event.user, 1L) )
 .returns(Types.TUPLE(Types.STRING, Types.LONG));
 stream3.print();
 // 2) 使用类来替代 Lambda 表达式
 clicks.map(new MyTuple2Mapper())
 .print();
 // 3) 使用匿名类来代替 Lambda 表达式
 clicks.map(new MapFunction<Event, Tuple2<String, Long>>() {
 @Override
 public Tuple2<String, Long> map(Event value) throws Exception {
 return Tuple2.of(value.user, 1L);
 }
 }).print();
 env.execute();
 }
 // 自定义 MapFunction 的实现类
 public static class MyTuple2Mapper implements MapFunction<Event, Tuple2<String, 
Long>>{
 @Override
 public Tuple2<String, Long> map(Event value) throws Exception {
 return Tuple2.of(value.user, 1L);
 }
 }
}

这些方法对于其它泛型擦除的场景同样适用。
3. 富函数类(Rich Function Classes)
“富函数类”也是 DataStream API 提供的一个函数类的接口,所有的 Flink 函数类都有其Rich 版本。富函数类一般是以抽象类的形式出现的。例如:RichMapFunction、RichFilterFunction、RichReduceFunction 等。
既然“富”,那么它一定会比常规的函数类提供更多、更丰富的功能。与常规函数类的不同主要在于,富函数类可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。
注:生命周期的概念在编程中其实非常重要,到处都有体现。例如:对于 C 语言来说,我们需要手动管理内存的分配和回收,也就是手动管理内存的生命周期。分配内存而不回收,会造成内存泄漏,回收没有分配过的内存,会造成空指针异常。而在 JVM 中,虚拟机会自动帮助我们管理对象的生命周期。对于前端来说,一个页面也会有生命周期。数据库连接、网络连接以及文件描述符的创建和关闭,也都形成了生命周期。所以生命周期的概念在编程中是无处不在的,需要我们多加注意。
Rich Function 有生命周期的概念。典型的生命周期方法有:
⚫ open()方法,是 Rich Function 的初始化方法,也就是会开启一个算子的生命周期。当一个算子的实际工作方法例如 map()或者 filter()方法被调用之前,open()会首先被调用。所以像文件 IO 的创建,数据库连接的创建,配置文件的读取等等这样一次性的工作,都适合在 open()方法中完成。。
⚫ close()方法,是生命周期中的最后一个调用的方法,类似于解构方法。一般用来做一些清理工作。
需要注意的是,这里的生命周期方法,对于一个并行子任务来说只会调用一次;而对应的,实际工作方法,例如 RichMapFunction 中的 map(),在每条数据到来后都会触发一次调用。来看一个例子:

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class RichFunctionTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(2);
 DataStreamSource<Event> clicks = env.fromElements(
 new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L),
 new Event("Alice", "./prod?id=1", 5 * 1000L),
 new Event("Cary", "./home", 60 * 1000L)
 );
 // 将点击事件转换成长整型的时间戳输出
 clicks.map(new RichMapFunction<Event, Long>() {
 @Override
 public void open(Configuration parameters) throws Exception {
 super.open(parameters);
 System.out.println(" 索 引 为 " + getRuntimeContext().getIndexOfThisSubtask() + " 的任务开始"); }
 @Override
 public Long map(Event value) throws Exception {
 return value.timestamp;
 }
 @Override
 public void close() throws Exception {
 super.close();
 System.out.println(" 索 引 为 " + getRuntimeContext().getIndexOfThisSubtask() + " 的任务结束"); 
 }
 })
 .print();
 env.execute();
 }
}

输出结果是:

索引为 0 的任务开始
索引为 1 的任务开始
1> 1000
2> 2000
2> 60000
1> 5000
索引为 0 的任务结束
索引为 1 的任务结束

一个常见的应用场景就是,如果我们希望连接到一个外部数据库进行读写操作,那么将连接操作放在 map()中显然不是个好选择——因为每来一条数据就会重新连接一次数据库;所以我们可以在 open()中建立连接,在 map()中读写数据,而在 close()中关闭连接。所以我们推荐的最佳实践如下:

public class MyFlatMap extends RichFlatMapFunction<IN, OUT>> {
 @Override
 public void open(Configuration configuration) {
 // 做一些初始化工作
 // 例如建立一个和 MySQL 的连接
 }
 @Override
 public void flatMap(IN in, Collector<OUT out) {
 // 对数据库进行读写
 }
 @Override
 public void close() {
 // 清理工作,关闭和 MySQL 数据库的连接。
 }
}

另外,富函数类提供了 getRuntimeContext()方法(我们在本节的第一个例子中使用了一下),可以获取到运行时上下文的一些信息,例如程序执行的并行度,任务名称,以及状态(state)。这使得我们可以大大扩展程序的功能,特别是对于状态的操作,使得 Flink 中的算子具备了处理复杂业务的能力。关于 Flink 中的状态管理和状态编程,我们会在后续章节逐渐展开。

5.3.4 物理分区(Physical Partitioning)

本节的最后,我们再来深入了解一下分区操作。
顾名思义,“分区”(partitioning)操作就是要将数据进行重新分布,传递到不同的流分区去进行下一步处理。其实我们对分区操作并不陌生,前面介绍聚合算子时,已经提到了 keyBy,它就是一种按照键的哈希值来进行重新分区的操作。只不过这种分区操作只能保证把数据按key“分开”,至于分得均不均匀、每个 key 的数据具体会分到哪一区去,这些是完全无从控制的——所以我们有时也说,keyBy 是一种逻辑分区(logical partitioning)操作。
如果说 keyBy 这种逻辑分区是一种“软分区”,那真正硬核的分区就应该是所谓的“物理分区”(physical partitioning)。也就是我们要真正控制分区策略,精准地调配数据,告诉每个数据到底去哪里。其实这种分区方式在一些情况下已经在发生了:例如我们编写的程序可能对多个处理任务设置了不同的并行度,那么当数据执行的上下游任务并行度变化时,数据就不应该还在当前分区以直通(forward)方式传输了——因为如果并行度变小,当前分区可能没有下游任务了;而如果并行度变大,所有数据还在原先的分区处理就会导致资源的浪费。所以这种情况下,系统会自动地将数据均匀地发往下游所有的并行任务,保证各个分区的负载均衡。
有些时候,我们还需要手动控制数据分区分配策略。比如当发生数据倾斜的时候,系统无法自动调整,这时就需要我们重新进行负载均衡,将数据流较为平均地发送到下游任务操作分区中去。Flink 对于经过转换操作之后的 DataStream,提供了一系列的底层操作接口,能够帮我们实现数据流的手动重分区。为了同 keyBy 相区别,我们把这些操作统称为“物理分区”操作。物理分区与 keyBy 另一大区别在于,keyBy 之后得到的是一个 KeyedStream,而物理分区之后结果仍是 DataStream,且流中元素数据类型保持不变。从这一点也可以看出,分区算子并不对数据进行转换处理,只是定义了数据的传输方式。常见的物理分区策略有随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast),下边我们分别来做了解。
1. 随机分区(shuffle)
最简单的重分区方式就是直接“洗牌”。通过调用 DataStream 的.shuffle()方法,将数据随机地分配到下游算子的并行任务中去。
随机分区服从均匀分布(uniform distribution),所以可以把流中的数据随机打乱,均匀地传递到下游任务分区,如图 5-9 所示。因为是完全随机的,所以对于同样的输入数据, 每次执行得到的结果也不会相同。
在这里插入图片描述
经过随机分区之后,得到的依然是一个 DataStream。我们可以做个简单测试:将数据读入之后直接打印到控制台,将输出的并行度设置为 4,中间经历一次 shuffle。执行多次,观察结果是否相同。

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class ShuffleTest {
 public static void main(String[] args) throws Exception {
 // 创建执行环境
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
// 读取数据源,并行度为 1
 DataStreamSource<Event> stream = env.addSource(new ClickSource());
// 经洗牌后打印输出,并行度为 4
 stream.shuffle().print("shuffle").setParallelism(4);
 env.execute();
 }
}
可以得到如下形式的输出结果:
shuffle:1> Event{user='Bob', url='./cart', timestamp=...}
shuffle:4> Event{user='Cary', url='./home', timestamp=...}
shuffle:3> Event{user='Alice', url='./fav', timestamp=...}
shuffle:4> Event{user='Cary', url='./cart', timestamp=...}
shuffle:3> Event{user='Cary', url='./fav', timestamp=...}
shuffle:1> Event{user='Cary', url='./home', timestamp=...}
shuffle:2> Event{user='Mary', url='./home', timestamp=...}
shuffle:1> Event{user='Bob', url='./fav', timestamp=...}
shuffle:2> Event{user='Mary', url='./home', timestamp=...}
...

2. 轮询分区(Round-Robin)
轮询也是一种常见的重分区方式。简单来说就是“发牌”,按照先后顺序将数据做依次分发,如图 5-10 所示。通过调用 DataStream 的.rebalance()方法,就可以实现轮询重分区。rebalance使用的是 Round-Robin 负载均衡算法,可以将输入流数据平均分配到下游的并行任务中去。注:Round-Robin 算法用在了很多地方,例如 Kafka 和 Nginx。
在这里插入图片描述
我们同样可以在代码中进行测试:

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class RebalanceTest {
 public static void main(String[] args) throws Exception {
 // 创建执行环境
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
// 读取数据源,并行度为 1
 DataStreamSource<Event> stream = env.addSource(new ClickSource());
// 经轮询重分区后打印输出,并行度为 4
 stream.rebalance().print("rebalance").setParallelism(4);
 env.execute();
 }
}
输出结果的形式如下所示,可以看到,数据被平均分配到所有并行任务中去了。
rebalance:2> Event{user='Cary', url='./fav', timestamp=...}
rebalance:3> Event{user='Mary', url='./cart', timestamp=...}
rebalance:4> Event{user='Mary', url='./fav', timestamp=...}
rebalance:1> Event{user='Cary', url='./home', timestamp=...}
rebalance:2> Event{user='Cary', url='./cart', timestamp=...}
rebalance:3> Event{user='Alice', url='./prod?id=1', timestamp=...}
rebalance:4> Event{user='Cary', url='./prod?id=2', timestamp=...}
rebalance:1> Event{user='Bob', url='./prod?id=2', timestamp=...}
rebalance:2> Event{user='Alice', url='./prod?id=1', timestamp=...}
...

3. 重缩放分区(rescale)
重缩放分区和轮询分区非常相似。当调用 rescale()方法时,其实底层也是使用 Round-Robin算法进行轮询,但是只会将数据轮询发送到下游并行任务的一部分中,如图 5-11 所示。也就是说,“发牌人”如果有多个,那么 rebalance 的方式是每个发牌人都面向所有人发牌;而 rescale的做法是分成小团体,发牌人只给自己团体内的所有人轮流发牌。
在这里插入图片描述
当下游任务(数据接收方)的数量是上游任务(数据发送方)数量的整数倍时,rescale的效率明显会更高。比如当上游任务数量是 2,下游任务数量是 6 时,上游任务其中一个分区的数据就将会平均分配到下游任务的 3 个分区中。由于 rebalance 是所有分区数据的“重新平衡”,当 TaskManager 数据量较多时,这种跨节点的网络传输必然影响效率;而如果我们配置的 task slot 数量合适,用 rescale 的方式进行“局部重缩放”,就可以让数据只在当前 TaskManager 的多个 slot 之间重新分配,从而避免了网络传输带来的损耗。
从底层实现上看,rebalance 和 rescale 的根本区别在于任务之间的连接机制不同。rebalance将会针对所有上游任务(发送数据方)和所有下游任务(接收数据方)之间建立通信通道,这是一个笛卡尔积的关系;而 rescale 仅仅针对每一个任务和下游对应的部分任务之间建立通信通道,节省了很多资源。
可以在代码中测试如下:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import
org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
public class RescaleTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
// 这里使用了并行数据源的富函数版本
// 这样可以调用 getRuntimeContext 方法来获取运行时上下文的一些信息
 env.addSource(new RichParallelSourceFunction<Integer>() {
 @Override
 public void run(SourceContext<Integer> sourceContext) throws 
Exception {
 for (int i = 0; i < 8; i++) {
 // 将奇数发送到索引为 1 的并行子任务
 // 将偶数发送到索引为 0 的并行子任务
 if ((i + 1) % 2 == 
getRuntimeContext().getIndexOfThisSubtask()) {
 sourceContext.collect(i + 1);
 }
 }
 }
 @Override
 public void cancel() {
 }
 })
 .setParallelism(2)
 .rescale()
 .print().setParallelism(4);
 env.execute();
 }
}
这里使用 rescale 方法,来做数据的分区,输出结果是:
4> 3
3> 1
1> 2
1> 6
103
104
3> 5
4> 7
2> 4
2> 8

可以将 rescale 方法换成 rebalance 方法,来体会一下这两种方法的区别。
4. 广播(broadcast)
这种方式其实不应该叫做“重分区”,因为经过广播之后,数据会在不同的分区都保留一份,可能进行重复处理。可以通过调用 DataStream 的 broadcast()方法,将输入数据复制并发送到下游算子的所有并行任务中去。
具体代码测试如下:

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class BroadcastTest {
 public static void main(String[] args) throws Exception {
 // 创建执行环境
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
// 读取数据源,并行度为 1
 DataStreamSource<Event> stream = env.addSource(new ClickSource());
// 经广播后打印输出,并行度为 4
 stream. broadcast().print("broadcast").setParallelism(4);
 env.execute();
 }
}
输出结果的形式如下所示:
broadcast:3> Event{user='Mary', url='./cart', timestamp=...}
broadcast:1> Event{user='Mary', url='./cart', timestamp=...}
broadcast:4> Event{user='Mary', url='./cart', timestamp=...}
broadcast:2> Event{user='Mary', url='./cart', timestamp=...}
broadcast:2> Event{user='Alice', url='./fav', timestamp=...}
broadcast:1> Event{user='Alice', url='./fav', timestamp=...}
broadcast:3> Event{user='Alice', url='./fav', timestamp=...}
broadcast:4> Event{user='Alice', url='./fav', timestamp=...}

可以看到,数据被复制然后广播到了下游的所有并行任务中去了。
5. 全局分区(global)
全局分区也是一种特殊的分区方式。这种做法非常极端,通过调用.global()方法,会将所有的输入流数据都发送到下游算子的第一个并行子任务中去。这就相当于强行让下游任务并行度变成了 1,所以使用这个操作需要非常谨慎,可能对程序造成很大的压力。
6. 自定义分区(Custom)
当 Flink 提 供 的 所 有 分 区 策 略 都 不 能 满 足 用 户 的 需 求 时 , 我 们 可 以 通 过 使 用partitionCustom()方法来自定义分区策略。在调用时,方法需要传入两个参数,第一个是自定义分区器(Partitioner)对象,第二个是应用分区器的字段,它的指定方式与 keyBy 指定 key 基本一样:可以通过字段名称指定,也可以通过字段位置索引来指定,还可以实现一个 KeySelector。
例如,我们可以对一组自然数按照奇偶性进行重分区。代码如下:

import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class CustomPartitionTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
// 将自然数按照奇偶分区
 env.fromElements(1, 2, 3, 4, 5, 6, 7, 8) .partitionCustom(new Partitioner<Integer>() {
 @Override
 public int partition(Integer key, int numPartitions) {
 return key % 2;
 }
 }, new KeySelector<Integer, Integer>() {
 @Override
 public Integer getKey(Integer value) throws Exception {
 return value;
 }
 })
 .print().setParallelism(2);
 env.execute();
 }
}

5.4 输出算子(Sink)

在这里插入图片描述
Flink 作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持,如图 5-12 所示,本节将主要讲解 Flink 中的 Sink 操作。我们已经了解了 Flink 程序如何对数据进行读取、转换等操作,最后一步当然就应该将结果数据保存或输出到外部系统了。

5.4.1 连接到外部系统

在 Flink 中,如果我们希望将数据写入外部系统,其实并不是一件难事。我们知道所有算子都可以通过实现函数类来自定义处理逻辑,所以只要有读写客户端,与外部系统的交互在任何一个处理算子中都可以实现。例如在 MapFunction 中,我们完全可以构建一个到 Redis 的连接,然后将当前处理的结果保存到 Redis 中。如果考虑到只需建立一次连接,我们也可以利用RichMapFunction,在 open() 生命周期中做连接操作。
这样看起来很方便,却会带来很多问题。Flink 作为一个快速的分布式实时流处理系统,对稳定性和容错性要求极高。一旦出现故障,我们应该有能力恢复之前的状态,保障处理结果的正确性。这种性质一般被称作“状态一致性”。Flink 内部提供了一致性检查点(checkpoint)来保障我们可以回滚到正确的状态;但如果我们在处理过程中任意读写外部系统,发生故障后就很难回退到从前了。
为了避免这样的问题,Flink 的 DataStream API 专门提供了向外部写入数据的方法:addSink。与 addSource 类似,addSink 方法对应着一个“Sink”算子,主要就是用来实现与外部系统连接、并将数据提交写入的;Flink 程序中所有对外的输出操作,一般都是利用 Sink 算子完成的。
Sink 一词有“下沉”的意思,有些资料会相对于“数据源”把它翻译为“数据汇”。不论怎样理解,Sink 在 Flink 中代表了将结果数据收集起来、输出到外部的意思,所以我们这里统一把它直观地叫作“输出算子”。之前我们一直在使用的 print 方法其实就是一种 Sink,它表示将数据流写入标准控制台打印输出。查看源码可以发现,print 方法返回的就是一个 DataStreamSink。

public DataStreamSink<T> print(String sinkIdentifier) {
 PrintSinkFunction<T> printFunction = new PrintSinkFunction<>(sinkIdentifier, 
false);
 return addSink(printFunction).name("Print to Std. Out");
}

与 Source 算子非常类似,除去一些 Flink 预实现的 Sink,一般情况下 Sink 算子的创建是通过调用 DataStream 的.addSink()方法实现的。

stream.addSink(new SinkFunction());

addSource 的参数需要实现一个 SourceFunction 接口;类似地,addSink 方法同样需要传入一个参数,实现的是 SinkFunction 接口。在这个接口中只需要重写一个方法 invoke(),用来将指定的值写入到外部系统中。这个方法在每条数据记录到来时都会调用:

default void invoke(IN value, Context context) throws Exception

当然,SinkFuntion 多数情况下同样并不需要我们自己实现。Flink 官方提供了一部分的框架的 Sink 连接器。如图 5-13 所示,列出了 Flink 官方目前支持的第三方系统连接器:

在这里插入图片描述

我们可以看到,像 Kafka 之类流式系统,Flink 提供了完美对接,source/sink 两端都能连接,可读可写;而对于 Elasticsearch、文件系统(FileSystem)、JDBC 等数据存储系统,则只提供了输出写入的 sink 连接器。
除 Flink 官方之外,Apache Bahir 作为给 Spark 和 Flink 提供扩展支持的项目,也实现了一些其他第三方系统与 Flink 的连接器,如图 5-14 所示
在这里插入图片描述
除此以外,就需要用户自定义实现 sink 连接器了。
接下来,我们就选取一些常见的外部系统进行展开讲解。

5.4.2 输出到文件

最简单的输出方式,当然就是写入文件了。对应着读取文件作为输入数据源,Flink 本来也有一些非常简单粗暴的输出到文件的预实现方法:如 writeAsText()、writeAsCsv(),可以直接将输出结果保存到文本文件或 Csv 文件。但我们知道,这种方式是不支持同时写入一份文件的;所以我们往往会将最后的 Sink 操作并行度设为 1,这就大大拖慢了系统效率;而且对于故障恢复后的状态一致性,也没有任何保证。所以目前这些简单的方法已经要被弃用。

Flink 为此专门提供了一个流式文件系统的连接器:StreamingFileSink,它继承自抽象类RichSinkFunction,而且集成了 Flink 的检查点(checkpoint)机制,用来保证精确一次(exactly once)的一致性语义。

StreamingFileSink 为批处理和流处理提供了一个统一的 Sink,它可以将分区文件写入 Flink支持的文件系统。它可以保证精确一次的状态一致性,大大改进了之前流式文件 Sink 的方式。
它的主要操作是将数据写入桶(buckets),每个桶中的数据都可以分割成一个个大小有限的分区文件,这样一来就实现真正意义上的分布式文件存储。我们可以通过各种配置来控制“分桶”的操作;默认的分桶方式是基于时间的,我们每小时写入一个新的桶。换句话说,每个桶内保存的文件,记录的都是 1 小时的输出数据。
StreamingFileSink 支持行编码(Row-encoded)和批量编码(Bulk-encoded,比如 Parquet)格式。这两种不同的方式都有各自的构建器(builder),调用方法也非常简单,可以直接调用StreamingFileSink 的静态方法:
⚫ 行编码:StreamingFileSink.forRowFormat(basePath,rowEncoder)。
⚫ 批量编码:StreamingFileSink.forBulkFormat(basePath,bulkWriterFactory)。
在创建行或批量编码 Sink 时,我们需要传入两个参数,用来指定存储桶的基本路径(basePath)和数据的编码逻辑(rowEncoder 或 bulkWriterFactory)。
下面我们就以行编码为例,将一些测试数据直接写入文件:

import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import 
org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import 
org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.Defa
ultRollingPolicy;
import java.util.concurrent.TimeUnit;
public class SinkToFileTest {
 public static void main(String[] args) throws Exception{
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(4);
 DataStreamSource<Event> stream = env.fromElements(new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L),
 new Event("Alice", "./prod?id=100", 3000L),
 new Event("Alice", "./prod?id=200", 3500L),
 new Event("Bob", "./prod?id=2", 2500L),
 new Event("Alice", "./prod?id=300", 3600L),
 new Event("Bob", "./home", 3000L),
 new Event("Bob", "./prod?id=1", 2300L),
 new Event("Bob", "./prod?id=3", 3300L));
 StreamingFileSink<String> fileSink = StreamingFileSink
 .<String>forRowFormat(new Path("./output"),
 new SimpleStringEncoder<>("UTF-8"))
 .withRollingPolicy(
 DefaultRollingPolicy.builder()
 .withRolloverInterval(TimeUnit.MINUTES.toMillis(15)
)
 .withInactivityInterval(TimeUnit.MINUTES.toMillis(5
))
 .withMaxPartSize(1024 * 1024 * 1024)
 .build())
 .build();
 // 将 Event 转换成 String 写入文件
 stream.map(Event::toString).addSink(fileSink);
 env.execute();
 }
}

这里我们创建了一个简单的文件 Sink,通过.withRollingPolicy()方法指定了一个“滚动策略”。“滚动”的概念在日志文件的写入中经常遇到:因为文件会有内容持续不断地写入,所以我们应该给一个标准,到什么时候就开启新的文件,将之前的内容归档保存。也就是说,上面的代码设置了在以下 3 种情况下,我们就会滚动分区文件:
⚫ 至少包含 15 分钟的数据
⚫ 最近 5 分钟没有收到新的数据
⚫ 文件大小已达到 1 GB

5.4.3 输出到 Kafka

Kafka 是一个分布式的基于发布/订阅的消息系统,本身处理的也是流式数据,所以跟Flink“天生一对”,经常会作为 Flink 的输入数据源和输出系统。Flink 官方为 Kafka 提供了 Source和 Sink 的连接器,我们可以用它方便地从 Kafka 读写数据。如果仅仅是支持读写,那还说明不了 Kafka 和 Flink 关系的亲密;真正让它们密不可分的是,Flink 与 Kafka 的连接器提供了端到端的精确一次(exactly once)语义保证,这在实际项目中是最高级别的一致性保证。关于这部分内容,我们会在后续章节做更详细的讲解。
现在我们要将数据输出到 Kafka,整个数据处理的闭环已经形成,所以可以完整测试如下:
(1)添加 Kafka 连接器依赖
由于我们已经测试过从 Kafka 数据源读取数据,连接器相关依赖已经引入,这里就不重复介绍了。
(2)启动 Kafka 集群
(3)编写输出到 Kafka 的示例代码
我们可以直接将用户行为数据保存为文件 clicks.csv,读取后不做转换直接写入 Kafka,主题(topic)命名为“clicks”。

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import java.util.Properties;
public class SinkToKafkaTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 Properties properties = new Properties();
 properties.put("bootstrap.servers", "hadoop102:9092");
 DataStreamSource<String> stream = env.readTextFile("input/clicks.csv");
 stream .addSink(new FlinkKafkaProducer<String>(
 "clicks",
 new SimpleStringSchema(),
 properties
 ));
 env.execute();
 }
}

这里我们可以看到,addSink 传入的参数是一个 FlinkKafkaProducer。这也很好理解,因为需要向 Kafka 写入数据,自然应该创建一个生产者。FlinkKafkaProducer 继承了抽象类TwoPhaseCommitSinkFunction,这是一个实现了“两阶段提交”的 RichSinkFunction。两阶段提交提供了 Flink 向 Kafka 写入数据的事务性保证,能够真正做到精确一次(exactly once)的状态一致性。关于这部分内容,我们会在后续章节展开介绍。
(4)运行代码,在 Linux 主机启动一个消费者, 查看是否收到数据

bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic clicks

我们可以看到消费者可以正常消费数据,证明向 Kafka 写入数据成功。另外,我们也可以读取 5.2 节中介绍过的任意数据源,进行更多的完整测试。比较有趣的一个实验是,我们可以同时将 Kafka 作为 Flink 程序的数据源和写入结果的外部系统。只要将输入和输出的数据设置为不同的 topic,就可以看到整个系统运行的路径:Flink 从 Kakfa 的一个 topic 读取消费数据,然后进行处理转换,最终将结果数据写入 Kafka 的另一个 topic——数据从 Kafka 流入、经 Flink处理后又流回到 Kafka 去,这就是所谓的“数据管道”应用。

5.4.4 输出到 Redis

Redis 是一个开源的内存式的数据存储,提供了像字符串(string)、哈希表(hash)、列表(list)、集合(set)、排序集合(sorted set)、位图(bitmap)、地理索引和流(stream)等一系列常用的数据结构。因为它运行速度快、支持的数据类型丰富,在实际项目中已经成为了架构优化必不可少的一员,一般用作数据库、缓存,也可以作为消息代理。
Flink 没有直接提供官方的 Redis 连接器,不过 Bahir 项目还是担任了合格的辅助角色,为我们提供了 Flink-Redis 的连接工具。但版本升级略显滞后,目前连接器版本为 1.0,支持的Scala 版本最新到 2.11。由于我们的测试不涉及到 Scala 的相关版本变化,所以并不影响使用。在实际项目应用中,应该以匹配的组件版本运行。
具体测试步骤如下:
(1)导入的 Redis 连接器依赖

<dependency>
 <groupId>org.apache.bahir</groupId>
 <artifactId>flink-connector-redis_2.11</artifactId>
 <version>1.0</version>
</dependency>

(2)启动 Redis 集群
这里我们为方便测试,只启动了单节点 Redis。
(3)编写输出到 Redis 的示例代码
连接器为我们提供了一个 RedisSink,它继承了抽象类 RichSinkFunction,这就是已经实现好的向 Redis 写入数据的 SinkFunction。我们可以直接将 Event 数据输出到 Redis:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import 
org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfi
g;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import 
org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescrip
tion;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
public class SinkToRedisTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 // 创建一个到 redis 连接的配置
 FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("hadoop102").build();
 env.addSource(new ClickSource())
  .addSink(new RedisSink<Event>(conf, new MyRedisMapper()));
 env.execute();
}
}

这里 RedisSink 的构造方法需要传入两个参数:
⚫ JFlinkJedisConfigBase:Jedis 的连接配置
⚫ RedisMapper:Redis 映射类接口,说明怎样将数据转换成可以写入 Redis 的类型接下来主要就是定义一个 Redis 的映射类,实现 RedisMapper 接口。

public static class MyRedisMapper implements RedisMapper<Event> {
 @Override
 public String getKeyFromData(Event e) {
 return e.user;
 }
 @Override
 public String getValueFromData(Event e) {
 return e.url;
 }
 @Override
 public RedisCommandDescription getCommandDescription() {
 return new RedisCommandDescription(RedisCommand.HSET, "clicks");
 }
}

在这里我们可以看到,保存到 Redis 时调用的命令是 HSET,所以是保存为哈希表(hash),表名为“clicks”;保存的数据以 user 为 key,以 url 为 value,每来一条数据就会做一次转换。
(4)运行代码,Redis 查看是否收到数据。

$ redis-cli
hadoop102:6379>hgetall clicks
1)Mary2)./home”
3)Bob4)./cart”

我们会发现, 发送了多条数据, Redis 中只有 2 条数据. 原因是 hash 中的 key 重复了, 后面的会把前面的覆盖掉。

5.4.5 输出到 Elasticsearch

ElasticSearch 是一个分布式的开源搜索和分析引擎,适用于所有类型的数据。ElasticSearch有着简洁的 REST 风格的 API,以良好的分布式特性、速度和可扩展性而闻名,在大数据领域应用非常广泛。
Flink 为 ElasticSearch 专门提供了官方的 Sink 连接器,Flink 1.13 支持当前最新版本的ElasticSearch。
写入数据的 ElasticSearch 的测试步骤如下。
(1)添加 Elasticsearch 连接器依赖

<dependency>
 <groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch7_${scala.binary.version}</artifactId>
 <version>${flink.version}</version>
</dependency>

(2)启动 Elasticsearch 集群
(3)编写输出到 Elasticsearch 的示例代码

import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import 
org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction
;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.HashMap;
public class SinkToEsTest {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
DataStreamSource<Event> stream = env.fromElements(
new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L),
 new Event("Alice", "./prod?id=100", 3000L),
 new Event("Alice", "./prod?id=200", 3500L),
 new Event("Bob", "./prod?id=2", 2500L),
 new Event("Alice", "./prod?id=300", 3600L),
 new Event("Bob", "./home", 3000L),
 new Event("Bob", "./prod?id=1", 2300L),
 new Event("Bob", "./prod?id=3", 3300L));
 ArrayList<HttpHost> httpHosts = new ArrayList<>();
 httpHosts.add(new HttpHost("hadoop102", 9200, "http"));
// 创建一个 ElasticsearchSinkFunction
 ElasticsearchSinkFunction<Event> elasticsearchSinkFunction = new ElasticsearchSinkFunction<Event>() {
 @Override
 public void process(Event element, RuntimeContext ctx, RequestIndexer indexer) {
 HashMap<String, String> data = new HashMap<>();
 data.put(element.user, element.url);
 IndexRequest request = Requests.indexRequest()
 .index("clicks")
 .type("type") // Es 6 必须定义 type
 .source(data);
 indexer.add(request);
 }
 };
 stream.addSink(new ElasticsearchSink.Builder<Event>(httpHosts, elasticsearchSinkFunction).build());
 stream.addSink(esBuilder.build());
 env.execute();
 }
}

与 RedisSink 类 似 , 连 接 器 也 为 我 们 实 现 了 写 入 到 Elasticsearch 的SinkFunction——ElasticsearchSink。区别在于,这个类的构造方法是私有(private)的,我们需要使用 ElasticsearchSink 的 Builder 内部静态类,调用它的 build()方法才能创建出真正的SinkFunction。
而 Builder 的构造方法中又有两个参数:
⚫ httpHosts:连接到的 Elasticsearch 集群主机列表
⚫ elasticsearchSinkFunction:这并不是我们所说的 SinkFunction,而是用来说明具体处理逻辑、准备数据向 Elasticsearch 发送请求的函数具体的操作需要重写中 elasticsearchSinkFunction 中的 process 方法,我们可以将要发送的数据放在一个 HashMap 中,包装成 IndexRequest 向外部发送 HTTP 请求。
(4)运行代码,访问 Elasticsearch 查看是否收到数据,查询结果如下所示。

{
 "took" : 5,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : 
 "total" : {
 "value" : 9,
 "relation" : "eq"
 },
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "clicks",
 "_type" : "_doc",
 "_id" : "dAxBYHoB7eAyu-y5suyU",
 "_score" : 1.0,
 "_source" : {
 "Mary" : "./home"
 }
 }
 ...
 ]
 }
}

5.4.6 输出到 MySQL(JDBC)

关系型数据库有着非常好的结构化数据设计、方便的 SQL 查询,是很多企业中业务数据存储的主要形式。MySQL 就是其中的典型代表。尽管在大数据处理中直接与 MySQL 交互的场景不多,但最终处理的计算结果是要给外部应用消费使用的,而外部应用读取的数据存储往往就是 MySQL。所以我们也需要知道如何将数据输出到 MySQL 这样的传统数据库。
写入数据的 MySQL 的测试步骤如下。
(1)添加依赖

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-jdbc_${scala.binary.version}</artifactId>
 <version>${flink.version}</version>
</dependency>
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.47</version>
</dependency>

(2)启动 MySQL,在 database 库下建表 clicks

mysql> create table clicks(
 -> user varchar(20) not null,
 -> url varchar(100) not null);

(3)编写输出到 MySQL 的示例代码

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class SinkToMySQL {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 
DataStreamSource<Event> stream = env.fromElements(
new Event("Mary", "./home", 1000L),
 new Event("Bob", "./cart", 2000L),
 new Event("Alice", "./prod?id=100", 3000L),
 new Event("Alice", "./prod?id=200", 3500L),
 new Event("Bob", "./prod?id=2", 2500L),
 new Event("Alice", "./prod?id=300", 3600L),
 new Event("Bob", "./home", 3000L),
 new Event("Bob", "./prod?id=1", 2300L),
 new Event("Bob", "./prod?id=3", 3300L));
 stream.addSink( JdbcSink.sink(
 "INSERT INTO clicks (user, url) VALUES (?, ?)",
 (statement, r) -> {
 statement.setString(1, r.user);
 statement.setString(2, r.url);
 },
 JdbcExecutionOptions.builder()
 .withBatchSize(1000)
 .withBatchIntervalMs(200)
 .withMaxRetries(5)
 .build(),
 new 
JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
 .withUrl("jdbc:mysql://localhost:3306/userbe
havior")
 // 对于 MySQL 5.7,用"com.mysql.jdbc.Driver"
 .withDriverName("com.mysql.cj.jdbc.Driver")
 .withUsername("username")
 .withPassword("password")
 .build()
 )
 );
 env.execute();
 }
}

(4)运行代码,用客户端连接 MySQL,查看是否成功写入数据。

mysql> select * from clicks;
+------+--------------+
| user | url |
+------+--------------+
| Mary | ./home |
| Alice| ./prod?id=300 |
| Bob | ./prod?id=3 |
+------+---------------+
3 rows in set (0.00 sec)

5.4.7 自定义 Sink 输出

如果我们想将数据存储到我们自己的存储设备中,而 Flink 并没有提供可以直接使用的连接器,又该怎么办呢?
与 Source 类似,Flink 为我们提供了通用的 SinkFunction 接口和对应的 RichSinkDunction抽象类,只要实现它,通过简单地调用 DataStream 的.addSink()方法就可以自定义写入任何外部存储。之前与外部系统的连接,其实都是连接器帮我们实现了 SinkFunction,现在既然没有现成的,我们就只好自力更生了。例如,Flink 并没有提供 HBase 的连接器,所以需要我们自己写。
在实现 SinkFunction 的时候,需要重写的一个关键方法 invoke(),在这个方法中我们就可以实现将流里的数据发送出去的逻辑。
我们这里使用了 SinkFunction 的富函数版本,因为这里我们又使用到了生命周期的概念,创建 HBase 的连接以及关闭 HBase 的连接需要分别放在 open()方法和 close()方法中。
(1)导入依赖

<dependency>
 <groupId>org.apache.hbase</groupId>
 <artifactId>hbase-client</artifactId>
 <version>${hbase.version}</version>
</dependency>

(2)编写输出到 HBase 的示例代码

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import java.nio.charset.StandardCharsets;
public class SinkCustomtoHBase {
 public static void main(String[] args) throws Exception {
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 env .fromElements("hello", "world").addSink( new RichSinkFunction<String>() {
 public org.apache.hadoop.conf.Configuration configuration; // 管理 Hbase 的配置信息,这里因为 Configuration 的重名问题,将类完整路径导入
 public Connection connection; // 管理 Hbase 连接
 @Override
 public void open(Configuration parameters) throws Exception {
 super.open(parameters);
 configuration = HBaseConfiguration.create();
 configuration.set("hbase.zookeeper.quorum", "hadoop102:2181");
 connection = ConnectionFactory.createConnection(configuration);
 }
 @Override
 public void invoke(String value, Context context) throws Exception { 
 Table table = connection.getTable(TableName.valueOf("test")); // 表名为 test
 Put put = new Put("rowkey".getBytes(StandardCharsets.UTF_8)); // 指定 rowkey
 put.addColumn("info".getBytes(StandardCharsets.UTF_8) // 指定列名
 , value.getBytes(StandardCharsets.UTF_8) // 写
入的数据
 , "1".getBytes(StandardCharsets.UTF_8)); // 写
入的数据
 table.put(put); // 执行 put 操作
 table.close(); // 将表关闭
 }
 @Override
 public void close() throws Exception {
 super.close();
 connection.close(); // 关闭连接
 }
 }
 );
 env.execute();
 }
}

(3)可以在 HBase 查看插入的数据。

5.5 本章总结

本章从编写 Flink 程序的基本流程入手,依次讲解了执行环境的创建、数据源的读取、数据流的转换操作,和最终结果数据的输出,对各种常见的转换操作 API 和外部系统的连接都做了详细介绍,并在其中穿插阐述了 Flink 中支持的数据类型和 UDF 的用法。我们可以自信地说,到目前为止已经充分掌握了 DataStream API 的基本用法,熟悉了 Flink 的编程习惯,应该说已经真正跨进了 Flink 流处理的大门。

当然,本章对于转换算子只是一个简单介绍,Flink 中的操作远远不止这些,还有窗口(Window)、多流转换、底层的处理函数(Process Function)以及状态编程等更加高级的用法。另外本章中由于涉及读写外部系统,我们不只一次地提到了“精确一次(exactly once)”的状态一致性,这也是 Flink 的高级特性之一。关于这些内容,我们将在后续章节逐一展开。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/4790.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot实现学生成绩管理系统【源码+论文】

16springboot学生成绩管理系统演示录像2022_o8mkp开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea Mav…

AirServer手机投屏软件的功能优势特点介绍

AirServer是适用于Mac和PC的先进的屏幕投屏软件&#xff0c;功能是十分强大。它的主要功能在于实时地将移动设备上的图像画面内容投放到电脑设备上&#xff0c;让电脑成为iPad、iPhone等iOS系统设备的大屏显示器。在设备之间建立局域网内的信号发送与接收通道&#xff0c;确保数…

细谈linux软硬链接

文章目录Ⅰ. 软链接Ⅱ. 硬链接1、硬链接2、硬链接数Ⅲ. 软硬链接的区别Ⅳ. 软硬链接的应用1、软链接的应用2、硬链接的应用3、硬链接创建规定Ⅰ. 软链接 ​ 在讲这些链接之前&#xff0c;我们都会先讲如何创建它们&#xff01; ​ 对于软连接&#xff0c;在 linux 中&#xf…

python matplotlib 图片显示中文

在Linux 环境中&#xff0c;使用matplotlib 显示中文时&#xff0c;总是提示&#xff1a; /python/stock.py:273: UserWarning: Glyph 33647 (\N{CJK UNIFIED IDEOGRAPH-836F}) missing from current font. fig.savefig(self.name ".jpg", bbox_inches tight) …

【数据结构】插入排序 (直接插入排序 希尔排序)

文章目录直接插入排序希尔排序直接插入排序 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中&#xff0c;直到所有的记录插入完为止&#xff0c;得到一个新的有序序列。 如果tmp比end的数大或者相等&#xff0c;就继续放在end后面。 如果比end的数小&…

Elasticsearch基本安全加上安全的 HTTPS 流量

基本安全加上安全的 HTTPS 流量 在生产环境中&#xff0c;除非您在 HTTP 层启用 TLS&#xff0c;否则某些 Elasticsearch 功能&#xff08;例如令牌和 API 密钥&#xff09;将被禁用。这个额外的安全层确保进出集群的所有通信都是安全的。 当您在模式下运行该elasticsearch-ce…

初始React

一.React的诞生1.什么是React?React是一个讲数据渲染为HTML视图的来源Js库&#xff0c;用于构建用户界面的JS库。在以前的学习中构建用户界面的常用操作步骤&#xff1a;发送请求获取数据处理数据&#xff08;过滤&#xff0c;整理格式等&#xff09;操作DOM呈现页面2.React诞…

《SpringBoot》第02章 自动配置机制(一) 项目启动

前言 关于SpringBoot&#xff0c;最大的特点就是开箱即用&#xff0c;通过自动配置机制&#xff0c;遵守约定大于配置这个准则&#xff0c;那么这个是如何实现的呢&#xff1f; 本章首先会介绍SpringBoot的启动执行 一、启动第一步&#xff1a;初始化 1.本章概述 当启动Sp…

【论文精读(李沐老师)】Attention Is All You Need

Abstract 在主流的序列转录&#xff08;给你一个序列&#xff0c;生成另外一个序列&#xff09;模型中主要是依赖复杂的RNN和CNN&#xff0c;一般包括encoder和decoder两个结构。在性能最好的模型里&#xff0c;通常使用注意力机制连接encoder和decoder。 &#xff08;本文想做…

HTTP API接口设计规范

1. 所有请求使用POST方法 使用post&#xff0c;相对于get的query string&#xff0c;可以支持复杂类型的请求参数。例如日常项目中碰到get请求参数为数组类型的情况。 便于对请求和响应统一做签名、加密、日志等处理 2. URL规则 URL中只能含有英文&#xff0c;使用英文单词或…

爱玩飞飞加速实现与分析

一步一步找数据。然后根据游戏数据找游戏基址&#xff0c;游戏基址可以遍历所有数据。想学的可以看看。第一步找基础数据&#xff0c;我们用的ce7.1.当然你们也可以用其他版本。网上随便下一个就行。 第一步。打开ce7.1附加游戏进程。 然后看下自己的血量是多少。我们这里是5…

HTML5支持的视频文件格式和音频文件格式有哪些?

在 HTML5 标准中, 我们有了新的 和 标签, 分别可以引入视频和音频文件的标签 那么这些标签又可以支持哪些文件格式呢 ? 格式支持 视频文件格式 MP4&#xff1a;MPEG-4 Part 14&#xff0c;支持H.264编码。几乎所有的浏览器都支持该格式。 WebM&#xff1a;谷歌开发的格式&a…

【最短路算法】第三弹:一文学懂spfa 算法(队列优化的Bellman-Ford算法)

博主简介&#xff1a;努力学习的大一在校计算机专业学生&#xff0c;热爱学习和创作。目前在学习和分享&#xff1a;算法、数据结构、Java等相关知识。博主主页&#xff1a; 是瑶瑶子啦所属专栏: 算法 &#xff1b;该专栏专注于蓝桥杯和ACM等算法竞赛&#x1f525;近期目标&…

Java Script

一.初识js 1.与css html的关系 HTML 网页的结构(骨CSS:网页的表现(皮JavaScript :网页的行为2.运行过程 编写的代码是保存在文件上,也就是存储到硬盘(外存zhong)双击以后,html文件浏览器(引用程序)就会读取文件,将文件内容加载到内存中,(数据流向:硬盘->内存)浏览器会解析用…

Linux——基本指令

目录 01. ls 指令 02. pwd命令 03. cd 指令 04. touch指令 05.mkdir指令&#xff08;重要&#xff09; 06.rmdir指令 && rm 指令&#xff08;重要&#xff09; 07.man指令&#xff08;重要&#xff09; 08.cp指令&#xff08;重要&#xff09; 09.mv指令&…

react使用craco.config.js完成rem移动端适配(sass)

环境&#xff1a; "react": "^18.2.0", "react-dom": "^18.2.0", "react-router-dom": "^6.8.2", "sass": "^1.58.3", yarn add craco/craco postcss-pxtorem lib-flexible 1、创建 craco.…

Java入门知识(超详细讲解)

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;老茶icon &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开兴好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;计…

REDIS19_zipList压缩列表详解、快递列表 - QuickList、跳表 - SkipList

文章目录①. 压缩列表 - zipList②. 快递列表 - QuickList③. 跳表 - SkipList①. 压缩列表 - zipList ①. ZipList是一种特殊的"双端链表",由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作,并且该操作的时间复杂度为O(1) (oxff:11111111) type…

BI界的ChatGPT,它有什么厉害之处

​ChatGPT火了&#xff0c;注册用户从0到1亿&#xff0c;仅用了2个月时间。ChatGPT的背后是大数据、大模型、大算力&#xff0c;是AI的能力集中化的典型场景。那么在BI界&#xff0c;是否也有一款像ChatGPT一样智能BI软件&#xff0c;只要告诉它我们想看啥数据&#xff0c;它噔…

使用 Jpom 自动构建和部署项目

比 Jenkins 简单的项目构建和部署工具。 前端项目自动构建部署 我有几个自用的前端项目&#xff0c;每次修改代码后都需要本地打包再上传到服务器进行部署&#xff0c;感觉有点麻烦&#xff0c;不够自动化&#xff0c;所以一直想找个能够实现自动构建和部署的工具。 这时候可…
最新文章