Linux文件系列:磁盘,文件系统,软硬链接

Linux文件系列:磁盘,文件系统,软硬链接

  • 一.磁盘相关知识
    • 1.磁盘机械构成
    • 2.磁盘物理存储
    • 3.磁盘逻辑存储
      • 1.LBA地址
      • 2.磁盘的分区和分组
  • 二.文件系统和inode
    • 1.inode结构体
    • 2.文件系统
      • 1.Super Block(超级块)
      • 2.Group Descriptor Table(块组描述表GDT)
      • 3.inode Table
      • 4.Data Blocks
      • 5.Block Bitmap(块位图)
      • 6.inode Bitmap
    • 3.理解文件系统
    • 4.几个补充的点
      • 1.int block[15]的介绍
      • 2.通过inode编号查找文件的分组
      • 3.文件名和inode编号的映射
        • 补充:重新理解目录文件的权限
      • 4.重谈文件的增删查改
      • 5.重谈文件路径
        • 补充知识点:挂载
  • 三.软硬链接
    • 1.软硬链接的操作与现象
      • 1.软链接
      • 2.硬链接
    • 2.软硬链接的原理
    • 3.软硬链接的应用场景
      • 1.软链接
      • 2.硬链接

我们之前所学的都是被进程打开了的文件,接下来我们要学习没有被进程所打开的文件,它们是存储在磁盘当中的

要学习这些文件,首先我们要先学习一下磁盘

一.磁盘相关知识

1.磁盘机械构成

在这里插入图片描述

2.磁盘物理存储

在这里插入图片描述
在这里插入图片描述

3.磁盘逻辑存储

1.LBA地址

在这里插入图片描述
我们知道磁带在展开之后呈现一种带状结构,磁带中的数据就是以这种线性的方式进行存储的

那么我们可不可以把磁盘"展开"呢?
在逻辑上面我们可以想象一下磁盘"展开"后的样子,给磁盘上的每一个扇区进行编号,然后"折"回去.
最后只需要通过一种映射关系和CHS定位法不就可以定位到具体的扇区了吗?

其实"展开"之后,磁盘就类似于数组了,此时对磁盘的管理就变成了对数组的管理了
在这里插入图片描述
我们知道磁盘是外设,将磁盘加载到内存当中是很慢的,因此操作系统认为512字节太小了
因此操作系统认为IO的基本单位是4KB,将这个数组划分为若干个4KB的数据块,
数据块和扇区之间就要进行一些映射关系完成这种转换

一个数据块对应于8个扇区

在这里插入图片描述
这些数据块所对应的地址就被称为LBA(Logical Block Address 即:逻辑块地址)地址

2.磁盘的分区和分组

假设我们有800GB的磁盘,如何对这800GB进行管理呢?

我们都知道电脑当中有若干盘:C盘,D盘等等…
在这里插入图片描述
其实,我们日常提到的C盘,D盘…等等,本质上都只是对一块磁盘的不同分区而已,C盘是一个分区,D盘是一个分区…
在这里插入图片描述
其实这里采用了分治的思想,将800GB分为8个区,每个区100GB,只要管理好100GB,那么不就能够照猫画虎管理好这800GB了吗?
那么如何管理好100GB呢?
将100GB分为10个组,每个组10GB,只要管理好10GB,那么不就能管理好这100GB了吗?

那么如何管理好10GB呢?
这就是我们接下来要探讨的问题:文件系统和inode

二.文件系统和inode

1.inode结构体

我们知道:文件=内容+属性
其中文件内容的大小是不确定的,但是文件属性的大小是确定的

操作系统想要管理文件,就要通过"先描述,在组织"的原则来进行管理,
因此需要抽象出描述文件属性的结构体(就是这里要介绍的inode结构体)

大致的成员变量如下:
struct inode
{
	类型;
	大小;
	权限;
	时间;
	.....
	inode编号;
	int block[15];
};

我们要说明的几点如下:

  1. 文件名不属于文件属性,而属于文件内容!!(因为文件名是可变的,文件名的长度不同,所占用的空间大小不同)
  2. 文件的唯一标识是inode编号,inode编号在每一个分区内是唯一的,在每一个分组内不是唯一的
  3. inode结构体的大小是128字节
  4. int block[15]是用来查找该文件所对应的内容的一个字段,我们后面会介绍的
ll -li  查看inode编号的命令

在这里插入图片描述

2.文件系统

每个分区都对应一个文件系统

下面我们介绍Linux操作系统下的ext2文件系统
ext2文件系统会根据分区的大小将该分区划分为若干个Block Group,而每个Block Group都有着相同的组成结构

而且文件的内容和属性是分区域存储的
在这里插入图片描述
不是每一个分组当中都有Super Block,但是每个分组当中都有其余的这5个字段
下面我们分别介绍一下这几个字段:

1.Super Block(超级块)

1.存放该分区(即该文件系统)的相应信息,记录的信息主要有:
block和inode的总量,未使用和已经使用了的block和inode的数量,每个block和inode的大小等等

2.由于Super Block存放的是该分区的相应信息,因此无需所有的分组都具有该字段(否则会浪费大量空间),只有小部分分组当中具有该字段

3.Super Block的信息被破坏,就意味着整个文件系统的结构就被破坏了

4.为什么不让它跟Boot Block一样只存一份呢?
因为万一某个分组当中的Super Block的损坏了,可以用其他分组内的Super Block恢复过来,提高文件系统的容错率

2.Group Descriptor Table(块组描述表GDT)

存放该分组的相应信息,每一个分组都有该字段,记录的信息主要有:
该分组已经使用了多少个inode,一共有多少个inode,
Group Descriptor Table,Block Bitmap,inode Bitmap,inode Table,Data Blocks这些字段的区域划分等等

3.inode Table

存放文件的属性(即inode结构体)

4.Data Blocks

数据区:存放文件内容的区域

5.Block Bitmap(块位图)

记录着Data Block中哪个数据块已经被占用了,哪个数据块尚未被占用

根据位图的特性,我们可以得出:
比特位的位置:表示的是块号
比特位的内容:对应的块是否被占用了

6.inode Bitmap

跟Block Bitmap类似,只不过记录的是哪个inode是否空闲可用而已

3.理解文件系统

我们知道:
Super Block记录着该分区/文件系统的相应信息
因此就可以通过对Super Block进行管理来完成对这个分区/文件系统的管理

因此操作系统可以将Super Block使用某种数据结构(例如链表)来进行管理
此时对分区/文件系统的管理就变成了对链表的增删查改

但是分区当中的每个分组内的这些字段也不是与生俱来的,
而是在分区之后通过格式化这个操作写入文件系统的信息(也就是
划分完各个管理字段的区域,填好每个Super Block GDT等等数据,从而完成文件系统的搭建)

其中不同分区可以写入不同或者相同的文件系统
在这里插入图片描述

4.几个补充的点

了解了这些字段之后,我们可能还会有些疑问:
1.前面的int block[15]还没有介绍呢

2.inode编号在每个分区内唯一,在每个分组中不唯一
不过如何通过inode编号来定位这个文件在哪个分区里面,在哪个分组里面呢?

3.为什么我们可以通过文件名来操作一个文件呢?
文件名不是不属于文件属性吗?

4.如何理解文件的新建和删除,查找和修改呢?

5.文件路径是怎么一回事?

下面我们就来解决这些问题

1.int block[15]的介绍

我们回过头来重新理解一下这个int block[15]
它是负责查找对应文件的内容的
在这里插入图片描述

2.通过inode编号查找文件的分组

为什么不先介绍查找分区呢?
因为查找分区和路径有关,谈完路径之后我们会谈查找分区的
在这里插入图片描述
这里到inode Bitmap当中进行查找主要是为了确认这个文件是否真的存在

3.文件名和inode编号的映射

我们知道,每一个普通文件都一定在一个目录当中
而目录也是文件,目录文件的内容就是
文件名和inode编号的映射关系,因此可以通过文件名映射到对应的inode编号,因此我们就可以通过文件名来操作一个文件了

补充:重新理解目录文件的权限

此时我们就能够更好的理解目录文件的权限了
在这里插入图片描述

4.重谈文件的增删查改

当我们新建一个文件时:
1.在inode bitmap当中查找尚未被使用的inode结构体,将这个结构体的内容填好,分配给这个文件,并且将这个比特位置为1(表示这个inode结构体已经被占用了)

2.修改该文件所在的目录文件的内容,添加上这个新文件的文件名和inode编号的映射关系

3.写入内容时直接在data Block处写入即可,根据内容大小来调整int block[15]字段的映射关系

当我们删除一个文件时:
只需要根据inode编号找到inode bitmap中对应的比特位,将这个比特位由1置为0(表示这个inode结构体和它所对应的数据块已经空闲了,可以被新的文件所占用了,也就达到了删除的目的)

这样做显著提高了删除文件的效率
因此我们平常在下载APP时会比较慢,而删除APP时特别的快

关于文件的查和改大家也能凭借自己去理解了,我这里就不赘述了

5.重谈文件路径

谈完文件的增删查改之后,我们已经显然得知:对一个文件进行增删查改都跟该文件所处目录有关系

也就是说我想要访问当前目录的某个文件test.txt,就必须要先访问当前目录,而当前目录也是一个文件,是在上一个目录当中的文件
因此要想访问当前目录,就必须先访问上一个目录…

因此查找一个文件时都必须要这样逆向的,如同递归般地往上走,直到到达根目录为止

因此要访问某个文件,就必须要知道当前文件的路径,然后按照这个路径对该文件进行逆向查找
而这个过程,就是对路径进行解析的过程

例如:
我目前在这个路径下
在这里插入图片描述
我想要访问当前目录下的test.txt这个文件
在这里插入图片描述
在这里插入图片描述

谈完了路径解析之后,下面我们来探讨一下如何判断当前文件在哪一个分区下面

补充知识点:挂载

我们要补充一个知识点:挂载

一个被写入文件系统的分区,想要被Linux操作系统使用,就必须要先把这个具有文件系统的分区进行"挂载"

什么叫做"挂载"呢?
在这里插入图片描述
简而言之,挂载就是把一个文件系统的分区写入到一个目录当中,而访问该分区就是通过该分区所挂载的目录进行访问的

因此,通过对路径前缀的解析,我们就能够优先区分出文件在哪一个分区下面,因此inode编号对于分区而言是可以不唯一的,因为查找一个文件所在分区是通过文件路径来查找的,而不是通过inode编号来查找的

三.软硬链接

1.软硬链接的操作与现象

1.软链接

我们之前提到过软链接,对应博客:Linux中的shell外壳与权限(包含目录文件的权限,粘滞位的来龙去脉)

当时我们将软链接文件当作快捷方式一样来看待,今天,我们再来理解一下这个软链接文件

创建软链接文件的命令:

ln -s 目标文件名 链接文件名 (这个-s可以理解为-soft)

在这里插入图片描述
为了证明软链接存放的就是目标文件的路径,我们在当前目录新建一个目录dir,然后将目标文件test.txt移动到dir下面,然后查看链接文件的内容
在这里插入图片描述
然后我们把test.txt再移动回来
在这里插入图片描述
此时,这个软链接文件就正常了

下面我们证明一下访问软链接文件就是访问目标文件
在这里插入图片描述
证明完毕

2.硬链接

创建硬链接文件的命令:

ln 目标文件名 链接文件名

在这里插入图片描述
下面我们向hello.txt目标文件当中写入内容
然后看一看这两个文件的变化
在这里插入图片描述
下面我们把目标文件hello.txt删除,然后访问硬链接文件link.hard的内容
在这里插入图片描述

2.软硬链接的原理

经过上面的现象+经验总结
我们可以得出:

软链接的本质就是一个独立文件,软链接文件的内容就是目标文件的路径
访问软链接文件,本质就是访问目标文件

硬链接的本质就是在指定的目录下,插入新的文件名和目标文件inode编号的映射关系,并让inode的引用计数++
删除文件时,先将硬链接数–,如果硬链接数减为0,那么就会将该文件所对应的inode bitmap的比特位全部清0

3.软硬链接的应用场景

1.软链接

软链接的应用场景就是作为"快捷方式"发挥作用
当我们想要访问一个路径较为麻烦的文件时,可以为这个文件建立软链接,放在我们规定的位置,这样就能够通过访问软链接文件从而访问这个文件了

这是文心一言上面给出的答案,大家可以对照理解一下
在这里插入图片描述

2.硬链接

先抛出一个问题在这里插入图片描述
我们首先想到的就是这个目录当中有没有什么奇怪的东西呢?
还真有,就是我们习以为常的隐藏目录:一个点和两个点
在这里插入图片描述
也就是说,新建一个目录时,因为这个目录当中默认就有隐藏目录.
而.就是这个目录的一个硬链接文件,因此新建目录的硬链接数就是2

可是又出现了另一个问题:
在这里插入图片描述
解决完这个问题之后,我们就能显而易见地看出硬链接的应用场景了
用于目录当中的一个点和两个点

我们知道:我们可以给普通文件创建硬链接文件,那么可不可以给目录文件创建硬链接文件呢?
我们试一下,不行
在这里插入图片描述

以上就是Linux文件系列:磁盘,文件系统,软硬链接的全部内容,希望能对大家有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/486761.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue3+threejs新手从零开发卡牌游戏(八):关联卡组和手牌区、添加初始化卡组和初始化手牌逻辑

首先我们优化下之前的代码,先加载游戏资源,然后再初始化场景,由于目前只有一个font字体需要加载,所以我们将之前game/deck/p1.vue中的font相关代码迁移到game/index.vue下,同时使用async和await处理异步加载&#xff0…

基于Scapy国内城市空气质量数据采集系统设计与实现

代码和完整的报告在文章最后 城市空气质量数据采集系统设计与实现 🏙️ 研究背景 🌬️ 城市化与环境挑战:随着城市化进程的加快,环境污染问题,尤其是空气质量问题,已成为公众关注的焦点。数据监测的重要性…

Windows安装配置国产达梦数据库、配置Python接口

文章目录 前言1.下载安装达梦数据库2.配置达梦环境变量3.安装Microsoft Visual C 14.04.安装达梦Python接口dmpython5.测试验证 总结 前言 达梦数据库(Dameng Database)是由武汉达梦数据库股份有限公司开发的一款高性能的关系型数据库管理系统。该数据库…

关于短群签名论文阅读

参考文献为2004年发表的Short Group Signatures 什么群签名? 群签名大致就是由一组用户组成一个群,其中用户对某条消息的签名,改签名不会揭示是哪一个用户签署的,签名只能表明该消息确实是来自该群的签名。对于群还有一个群管理者…

蓝桥杯算法 - DP

上一篇:[[蓝桥杯算法-排序、递归、全排列]] 动态规划(dp) dp即动态规划,常用于:数学,计算机科学,管理学,经济和生物信息学。 dp在生活中也很常见,如:你今天…

【随笔】oh-my-posh(Windows power shell为例)

Oh My Posh 是一个适用于任何 shell 的自定义提示引擎,能够使用函数或变量调整提示字符串。 文章目录 一、安装oh-my-posh二、安装Nerd 字体三、oh-my-posh 初始化四、更换主题 一、安装oh-my-posh GitHub repo:https://github.com/JanDeDobbeleer/oh-m…

情感视频素材怎么来的?(情感语录的视频素材在哪里找)

很多小伙伴觉得情感类型的短视频账号用户多,都想要进入分一杯羹,那么这些创作素材去哪里找呢,下面分享几个非常使用的找情感短视频素材的办法。 1,蛙学网 说到情感视频素材的短视频,作为一个专业的短视频素材网站&am…

2024年云服务器ECS价格表出炉——腾讯云

腾讯云服务器多少钱一年?61元一年起。2024年最新腾讯云服务器优惠价格表,腾讯云轻量2核2G3M服务器61元一年、2核2G4M服务器99元一年可买三年、2核4G5M服务器165元一年、3年756元、轻量4核8M12M服务器646元15个月、4核16G10M配置32元1个月、312元一年、8核…

nodeJs中实现连表查询

nodeJs中实现连表查询 router.post(/getOrder, async function(req, res, next) {let userId req.body.phone;let sql select * from orders where userId?;let orders await new Promise((resolve, reject) > {connection.query(sql, [userId], function(error, resul…

一分钟在Solana链创建代币教程

只需要 1 分钟就可以创建自己的SOLANA代币 1、连接Solana钱包2、填写代币信息创建3、创建成功 Solana 是一个基于区块链技术的高性能、去中心化的智能合约平台,旨在为开发者提供高度可扩展和低成本的区块链基础设施。通过其创新的共识机制和高吞吐量的网络架构&…

注册中国商标的大致流程

在当今竞争激烈的商业环境中,商标作为企业形象和品牌标识的重要载体,其保护和推广至关重要。注册中国商标是拓展中国市场的关键步骤 注册中国商标需要以下基本资料: 商标图样:须清晰、完整地展示商标图案和文字内容;商…

MQ消息队列从入门到精通速成

文章目录 1.初识MQ1.1.同步和异步通讯1.1.1.同步通讯1.1.2.异步通讯 1.2.技术对比: 2.快速入门2.1.安装RabbitMQ2.2.RabbitMQ消息模型2.3.导入Demo工程2.4.入门案例2.4.1.publisher实现2.4.2.consumer实现 2.5.总结 3.SpringAMQP3.1.Basic Queue 简单队列模型3.1.1.…

大模型日报|今日必读的6篇大模型论文

大家好,今日必读的大模型论文来啦! 1.英伟达提出LATTE3D:更快、更好的“文生3D”方法 近来,由文本到 3D 生成的方法可以生成令人印象深刻的 3D 效果,但这个过程需要耗时的优化过程,每个提示(p…

AI之Suno:Suno V3的简介、安装和使用方法、案例应用之详细攻略

AI之Suno:Suno V3的简介、安装和使用方法、案例应用之详细攻略 目录 Suno AI的简介 1、特点与改进: Suno AI的安装和使用方法 1、第一步,让国产大模型—ChatGLM4帮我写一个提示词 2、第二步,将提示词交给Suno v3,…

TikTok vs Instagram!哪个广告形式更适合你

近几年,TikTok以短视频和创新性吸引不少年轻受众,在广告方面也提供挑战赛、创意滤镜和名人合作等多种方式,自2019年起迅速增长,成为Instagram的强劲对手,连续三年下载量居首。而Instagram则拥有十多年历史和庞大用户基…

人工智能(Educoder)-- 搜索技术 -- 盲目式搜索

第1关:盲目搜索之宽度优先搜索算法 任务描述 本关任务:给定迷宫地图以及在迷宫中的起始位置,利用宽度优先搜索算法求解走出迷宫的最短路径长度,走出迷宫意味着达到迷宫地图的边界(所有位置下标0开始)。 …

安卓工控一体机主板定制_联发科MTK平台解决方案

新移科技安卓工控一体机方案基于MT8766主芯片,采用四核 Cortex-A53 CPU,搭载Android 12.0系统,主频高达2.0GHz,具有低功耗和高性价比的优势。搭载ARM IMG GE8300 高性能GPU和4G全网通版本的RF,网络连接稳定快速。 可直…

Linux调试器-gdb

一、背景 程序的发布方式有两种,debug模式和release模式 debug模式:编译器形成可执行程序的时候会给可执行程序添加调试信息 程序员调试时使用debug模式,而release模式用于测试 而gcc/g默认编译,采用release模式 用gcc/g使用…

智能建筑:基于IT的集成和融合解决方案

智能建筑( Intelligent Building) 定义: 以建筑为平台,兼备建筑设备、办公自动化及通信网络系统,集结构、系统、服务、管理及它们之间的最优化组合,向人们提供一个安全、高效、舒适、便利的建筑环境。 智能建筑的发展历史: -产生:1984年世界上第一座智能大厦诞生于美国…

基于yolov8安全帽检测的系统

基于yolov8安全帽检测的系统 项目描述: 安全头盔检测(计算机视觉) 1.自训练数据集1538张数据图片,进行标注,并进行100轮的训练,准确率达0.966 2.使用 Flask 和 Ultralytics YOLOv8 模型开发了一个 Web 应…
最新文章