计算机网络:物理层 - 信道复用

计算机网络:物理层 - 信道复用

    • 频分复用
    • 时分复用
    • 统计时分复用
    • 波分复用
    • 码分复用


计算机网络中,用户之间通过信道进行通信,但是信道是有限的,想要提高网络的效率,就需要提高信道的利用效率。因此计算机网络中普遍采用信道复用技术,让一条信道可以同时为多个用户服务。

复用是指多个用户使用一个共享信道进行通信

在这里插入图片描述

计算机网络中常见的信道复用技术有:频分复用时分复用统计时分复用波分复用码分复用

频分复用

频分复用就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输一路信号。用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。

在这里插入图片描述

比如下图:

在这里插入图片描述

左侧是三段不同的信号,经过Modulator即调制器,把三段信号用不同的方式调制,调制到不同的频率,再把调制后的三段信号混合传输出去。由于调制后的三段信号占用的频率是不同的,所以可以把三段不同频率的信号拆分出来,就得到了三条独立的信号:
在这里插入图片描述

拆分后的不同信号,再经过对于的Demodulator解调器,就可以还原出最原始的信号。这就是频分复用的基本原理。

再看到一个量化的例子:
在这里插入图片描述

一开始三个用户都发送了频率范围在0 - 4的信号,经过三个不同的调制器,蓝色信号被调制到了20 - 24,红色信号被调制到了24 - 28,绿色信号被调制到了28 - 32。因为不同信号处于不同频段,将其混合后传输,再经过拆分,又可以拆分出三条数据出来,最后经过解调处理,我们又得到了频率在0 - 4的三条信号。

当然,频分复用也可以叠加:
在这里插入图片描述

从左向右,第一次将12条信号进行了调制,第二次把第一次调制出来的混合信号再作为一个信号,拿去进行调制,与其他信号进行频分复用。以此类推,多次叠加下去。

频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。


时分复用

时分复用就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划分配好且固定不变,所以有时也叫同步时分复用。

在这里插入图片描述
以上图片就是一个时分复用是示例图,现在我对其进行一个标注:

在这里插入图片描述

左侧与右侧的器械:

MUX:信号复用器
DEMUX:信号分用器

我们把一个周期称为一个时分复用帧(TDM帧),在一个周期内部,每个主机发送的信号按照固定的顺序出现,比如这里的顺序就是4 3 2 1,这里的数字代表主机发送的信号。

一个主机发送的信号在一个时分复用帧里面占用的时间叫做一个时隙,通过图片可以看到,在一个时隙内,一个信号占用了整个信道的带宽,也就是独享一个信道

我们再看到一个量化的例子:
在这里插入图片描述

左侧是四台主机,它们分别发送了一串比特流,经过MUX后,右侧每四个比特组成了一个TDM周期。
左侧的绿色框框部分,就是第一个TDM周期包含的数据,从下往上是0101,因此右侧绿色的第一个TDM周期的数据就是0101。以此类推,后续的00011101是如何组成的,也就显而易见了。也就是每台主机提供一个比特位的数据,占用一个时隙,四个时隙构成了一个TDM周期发送出去。这个过程中,四台主机的数据在一个周期中的位置都是固定的。

时分复用的优点是时隙分配固定,便于调节控制,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会出现空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的利用率。计算机发送的数据具有突发性,所以经常出现以下情况:

在这里插入图片描述
上图中,由于计算机主机并不会一直持续的发送消息,所以一个TDM周期中,可能只有部分计算机发送了数据,TDM还没有被填满就发送了出去,因此信道利用率比较低。

时分复用技术与频分复用技术一样,有着非常广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和HFC网络中CM与CMTS的通信都是利用了时分复用的技术。


统计时分复用

统计时分复用是对时分复用的优化,先前我们的时分复用会出现一个TDM还没有被填满就发送出去,导致信道利用率降低的问题。而统计时分复用优化了这个问题:

在这里插入图片描述
在统计时分复用中,一个周期叫做STDM帧,每次发送数据前,都会等数据把STDM帧填满再发送。但是STDM对数据的顺序不在有要求了。时分复用中,要求每台主机在TDM中占用的时隙位置是固定的。但是统计时分复用只要求填满一个STDM周期,数据的顺序可以是任意的。不过因为缺少了固定的位置来确定目的主机,因此每一个时隙都要额外带上一个目标主机的地址信息


波分复用

波分复用其实就是光的频分复用。

在这里插入图片描述
把光信号调制到不同的频段,然后整合发送出去,接受方再把不同频段的信号拆分出来。


码分复用

码分复用CDM,是靠不同的编码来区分各路原始信号的一种复用方式,通过码分复用共享信道也叫作码分多址CDMA。码分复用是一个比较复杂的复用方式,我们要慢慢讲解。

规则如下:

在码分多址(CDMA)中,比特被重新编码,每一个使用码分多址的站点都拥有一个唯一的码片序列
若发送比特1,则发送自己的码片序列
若发送比特0,则发送该码片序列的二进制反码。

例如,如果S站的8bit码片序列是00011011

  • 如果该站点发送1,那就发送00011011
  • 如果该站点发送0,那就发送11100100

为了方便运算,我们把码片中的0写为-11写为+1,因此S站的码片序列为:(-1 -1 -1 +1 +1 -1 +1 +1)码片序列又叫做码片向量。码片向量有一个非常重要的运算,叫做规格化内积,我们先来了解一下什么叫做规格化内积:

假设我们有一个长度为m的码片向量S,另外一个长度为m的码片向量T,两者规格化内积写作: S ∙ T \mathrm{S} \bullet \mathrm{T} ST
具体运算为:

S ∙ T ≡ 1 m ∑ i = 1 m S i T i \mathrm{S} \bullet \mathrm{T} \equiv \frac{1}{m} \sum_{i=1}^{m} S_{i} T_{i} STm1i=1mSiTi

简单来说,就是把两个码片向量的每一位相乘后,求平均值。

假设向量S为(-1 -1 -1 +1 +1 -1 +1 +1),向量T为(-1 -1 +1 -1 +1 +1 +1 -1)
两者规格化内积为:
S ∙ T ≡ ( − 1 ) × ( − 1 ) + ( − 1 ) × ( − 1 ) + ( − 1 ) × 1 + 1 × ( − 1 ) + 1 × 1 + ( − 1 ) × 1 + 1 × 1 + 1 × ( − 1 ) 8 \mathrm{S} \bullet \mathrm{T} \equiv \frac{{\color{red} (-1) \times (-1)} + {\color{orange} (\frac{}{} -1) \times (-1)} + {\color{gold} (-1) \times 1} + {\color{Green} 1 \times (-1)} + {\color{cyan} 1 \times 1 } + {\color{blue} (-1) \times 1} +{\color{Purple} 1 \times 1} + 1 \times (-1)}{8} ST8(1)×(1)+(1)×(1)+(1)×1+1×(1)+1×1+(1)×1+1×1+1×(1)

其中每一种颜色代表一对对应位置的分量,对应位置的分量相乘后求和,最后再除以分量个数8,得到平均值。

CDMA的一个重要特点就是:各个站点的码片向量不仅各不相同,而且两两正交
所谓码片向量正交,就是两个码片向量规格化内积结果为0。比如刚刚的 S ∙ T \mathrm{S} \bullet \mathrm{T} ST就等于0,因此ST正交。因为每两个站点之间都正交,所以所以站点都满足以下规则:

  1. 任何一个码片向量都和其余各站的码片向量规格化内积为0
  2. 任何一个码片向量都和其余各站的码片向量的相反向量规格化内积为0
  3. 任何一个码片向量和自己规格化内积都是1
  4. 任何一个码片向量和自己的相反向量规格化内积都是-1

根据这四条规则,我们的码分复用就可以运作了。我们看到一个示例:
共有四个站进行 CDMA 通信,四个站的码片序列为:

A:(-1 -1 -1 +1 +1 -1 +1 +1)
B:(-1 -1 +1 -1 +1 +1 +1 -1)
C:(1 +1 -1 +1 +1 +1 -1 -1)
D:(-1 +1 -1 -1 -1 -1 +1 -1)

现在收到一个码片序列为:R:(-1 +1 -3 +1 -1 -3 +1 +1)
那么每个站发送的信号是什么?

对于这个问题,我要先说明,如果ABCD同时发送消息,此时会把ABCD的码片向量全部进行规格化内积,也就是 A ∙ B ∙ C ∙ D \mathrm{A} \bullet \mathrm{B} \bullet \mathrm{C} \bullet \mathrm{D} ABCD,就得到了一个混合码片向量R

  • 根据规则1和规则2:一个站点的码片向量和其它站点规格化内积一定是0,因此如果和这个混合向量R规格化内积,结果为0,说明这个混合向量中没有该站点发送的信息。
  • 根据规则3:如果某个站点和这个混合向量R规格化内积结果为1,说明该站点发送了自己的码片向量,也就是发送了bit1。
  • 根据规则4:如果某个站点和这个混合向量R规格化内积结果为-1,说明该站点发送了和自己相反的码片向量,也就是发送了bit0。

经过计算,得到:

A ∙ R ≡ 1 \mathrm{A} \bullet \mathrm{R} \equiv 1 AR1:说明混合向量R中存在A自己的码片向量,A站点发送了1
B ∙ R ≡ − 1 \mathrm{B} \bullet \mathrm{R} \equiv -1 BR1:说明混合向量R中存在B自己的码片向量相反向量,B站点发送了0
C ∙ R ≡ 0 \mathrm{C} \bullet \mathrm{R} \equiv 0 CR0:说明混合向量R中不存在C发送的向量,因此C站点没有发送信号
D ∙ R ≡ 1 \mathrm{D} \bullet \mathrm{R} \equiv 1 DR1:说明混合向量R中存在D自己的码片向量,D站点发送了1

通过这样的码分复用,把所有信号都以码片向量的形式发送后混合,接收方只需要拿其他站点的码片向量一个一个地和混合向量规格化内积,就可以知道哪一个站点发送了信号,发送的信号是什么。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/494397.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python学习12:python中的字符串格式化-数字精度控制

python中的字符串格式化-数字精度控制 1.使用辅助符号"m.n"来进行数据的宽度和精度的控制 m,控制宽度,要求是数字(一般是很少使用的),设置的宽度小于数字自身,不生效 n,控制小数点精度,要求是数…

PASSL代码解读[01] readme

介绍 PASSL 是一个基于 PaddlePaddle 的视觉库,用于使用 PaddlePaddle 进行最先进的视觉自监督学习研究。PASSL旨在加速自监督学习的研究周期:从设计一个新的自监督任务到评估所学的表征。 PASSL 主要特性: 自监督前沿算法实现 PASSL 实现了…

自动驾驶传感器:惯性导航IMU原理

自动驾驶传感器:惯性导航IMU原理 附赠自动驾驶学习资料和量产经验:链接 组合导航里包含了GNSS卫星导航模块与IMU惯性导航模块,前一篇文章写了GNSS模块,本章写IMU惯导,也是本系列最后一篇文章。 1. 惯性测量单元&…

python django实战开发序列化器的一个应用心得分享

需求: 查询的时候返回不包括SharePasswd 字段, 但是新增操作需要用到该字段 再不写多个model模型和序列化器的前提下实现 如果您在查询(GET 请求)时不希望返回 SharePasswd 字段,但在新增(POST 请求)时需要用到该字段…

数据结构 - 用队列实现栈/用栈实现队列

用栈实现队列 思路: 队列是遵循队头出数据,队列进数据。 创建两个栈,一个左栈,一个右栈。左栈用来插入新数据,右栈用来出数据 我们要借用栈的性质也实现一个出数据,和入数据的功能,该怎么样实…

[flask]异常抛出和捕获异常

Python学习之Flask全局异常处理流程_flask 异常处理-CSDN博客 读取文件错误 OSError: [Errno 22] Invalid argument:_[errno 22] invalid argument: ..\\data\\snli_1.0\\-CSDN博客 异常触发 assert触发异常: 在Python中,使用assert语句可以检查某个条…

“智慧食堂”设计与实现|Springboot+ Mysql+Vue+Java+ B/S结构(可运行源码+数据库+设计文档)

本项目包含可运行源码数据库LW,文末可获取本项目的所有资料。 推荐阅读100套最新项目持续更新中..... 2024年计算机毕业论文(设计)学生选题参考合集推荐收藏(包含Springboot、jsp、ssmvue等技术项目合集) 目录 1. 功…

Unity urp渲染管线下,动态修改材质球surfaceType

在项目中遇到了需要代码动态修改材质球的surfaceType,使其动态切换是否透明的需求。 urp渲染管线下,动态修改材质球的surfaceType,查了大部分帖子,都有一些瑕疵,可能会造成透明后阴影投射有问题。 其次在webgl平台上…

CSS(五)

一、定位 1.1 为什么需要定位 提问: 以下情况使用标准流或者浮动能实现吗? 1. 某个元素可以自由的在一个盒子内移动位置,并且压住其他盒子. 2. 当我们滚动窗口的时候,盒子是固定屏幕某个位置的。 以上效果,标准流或浮…

VBA高级应用30例应用2:MouseMove鼠标左键按下并移动鼠标事件

《VBA高级应用30例》(版权10178985),是我推出的第十套教程,教程是专门针对高级学员在学习VBA过程中提高路途上的案例展开,这套教程案例与理论结合,紧贴“实战”,并做“战术总结”,以…

数据安全之路:Databend 用户策略指南

在 Databend 中,我们致力于保护用户的数据安全。除了身份认证之外,我们还提供了多种访问策略,包括网络策略(Network Policy)、密码策略(Password Policy)和数据脱敏策略(Masking Pol…

【面试经典150 | 动态规划】三角形最小路径和

文章目录 写在前面Tag题目来源解题思路方法一:动态规划 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行…

如何使用Docker轻松构建和管理应用程序(二)

上一篇文章介绍了 Docker 基本概念,其中镜像、容器和 Dockerfile 。我们使用 Dockerfile 定义镜像,依赖镜像来运行容器,因此 Dockerfile 是镜像和容器的关键,Dockerfile 可以非常容易的定义镜像内容,同时在我们后期的微…

SpringBoot集成WebSocket实现简单的多人聊天室

上代码—gitee下载地址: https://gitee.com/bestwater/Spring-websocket.git下载代码,连上数据库执行SQL,就可以运行,最终效果

二轴机器人大米装箱机:高精度特性如何助力食品工业提升效率与品质?

在当今快节奏的工业生产中,食品行业的自动化、智能化水平已成为衡量其竞争力的关键指标。特别是在大米生产线上,如何确保装箱环节的高效与精准,直接关系到企业的生产效率和产品品质。二轴机器人大米装箱机凭借其高精度特性,正逐渐…

STM32的简介

内存 一般MCU包含的存储空间有FLASH和RAM,(RAM和flash又有片上和片外的区别,片上表示mcu自带的,已经封装在MCU内部的,片外表示外挂的,当项目中需要做一些复杂的应用,会存在资源不足的情况,这时…

动态菜单设计

需求: 登录不同用户 显示不同的菜单 思路:根据用户id 左关联表 查询出对应的菜单选项 查询SQL select distinct-- 菜单表 去除重复记录sys_menu.id,sys_menu.parentId, sys_menu.name from -- 权限表sys_menu-- 角色与权限表 菜单表id 角色菜…

Jenkins常用插件安装及全局配置

Jenkins常用插件安装及全局配置 前言 ​ Jenkins是一个流行的持续集成工具,通过安装适用的插件,可以扩展Jenkins的功能,并与其他工具和系统集成。本文将介绍一些常用的Jenkins插件以及安装和配置的步骤。通过安装和配置这些常用插件&#xf…

从根本上优雅地解决 VSCode 中的 Python 模块导入问题

整体概述: 在我尝试运行 test_deal_file.py 时,我遇到了一个 ModuleNotFoundError 错误,Python告诉我找不到名为 controllers 的模块。这意味着我无法从 deal_file.py 中导入 read_excel 函数。 为了解决这个问题,我尝试了几种方法…

【电能管理】电力物联网仪表/多功能电表/无线计量/多回路计量/分项计量/终端感知设备/全电量参数测量/正反向有功无功测量

什么是物联网电表!!! 安科瑞薛瑶瑶18701709087 物联网电表是智能电表的一种,可以用无线通信方式来操控,除了拥有电度表的有点以外,还可以把硬件和软件联合起来发挥更大的作用。 物联网电表主要用于计量低…
最新文章