PyTorch深度学习实战 | 典型卷积神经网络

在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产都起到了巨大的促进作用,如VGG、ResNet、Inception和DenseNet等,很多投入实用的卷积神经都是在它们的基础上进行改进的。初学者应从试验开始,通过阅读论文和实现代码(tensorflow.keras.applications包中实现了很多有影响力的神经网络模型的源代码)来全面了解它们。下文简要讨论两个有代表性的卷积神经网络,它们都是卷积层、池化层、全连接层等的不同组合。

01、VGG-16,VGG-19

VGG-16[32]是牛津大学的Visual Geometry Group在2015年发布的共16层的卷积神经网络,有约1.38亿个网络参数。该网络常被初学者用来学习和体验卷积神经网络。

VGG-16模型是针对ImageNet挑战赛设计的,该挑战赛的数据集为ILSVRC-2012图像分类数据集。ILSVRC-2012图像分类数据集的训练集有总共有1281167张图片,分为1000个类别,它的验证集有50000张图片样本,每个类别50个样本。

ILSVRC-2012图像分类数据集是2009年开始创建的ImageNet图像数据集的一部分。基于该图像数据集举办了具有很大影响力的ImageNet挑战赛,很多新模型就是在该挑战赛上发布的。

图 1 VGG-16模型的网络结构

VGG-16模型的网络结构如图1所示,从左侧输入大小为224×224×3的彩色图片,在右侧输出该图片的分类。

输入层之后,先是2个大小为3×3、卷积核数为64、步长为1、零填充的卷积层,此时的数据维度大小为224×224×64,在水平方向被拉长了。

然后是1个大小为2×2的最大池化层,将数据的维度降为112×112×64,再经过2个大小为3×3、卷积核数为128、步长为1、零填充的卷积层,再一次在水平方向上被拉长,变为112×112×128。

然后是1个大小为2×2的最大池化层,和3个大小为3×3、卷积核数为256、步长为1、零填充的卷积层,数据维度变为56×56×256。

然后是1个大小为2×2的最大池化层,和3个大小为3×3、卷积核数为512、步长为1、零填充的卷积层,数据维度变为28×28×512。

然后是1个大小为2×2的最大池化层,和3个大小为3×3、卷积核数为512、步长为1、零填充的卷积层,数据维度变为14×14×512。

然后是1个大小为2×2的最大池化层,数据维度变为7×7×512。

然后是1个Flatten层将数据拉平。

最后是3个全连接层,节点数分别为4096、4096和1000。

除最后一层全连接层采用Softmax激活函数外,所有卷积层和全连接层都采用relu激活函数。

从上面网络结构可见,经过卷积层,通道数量不断增加,而经过池化层,数据的长度和宽度不断减少。

Visual Geometry Group后又发布了19层的VGG-19模型。

TensorFlow实现了VGG-16模型和VGG-19模型 。TensorFlow还提供了用ILSVRC-2012-CLS图像分类数据集预先训练好的VGG-16和VGG-19模型,下面给出一个用预先训练好的模型来识别一幅图片(图2)的例子。

图2 试验用的小狗照片

代码清单1 VGG-19预训练模型应用(vgg19_app.py)


1.  import tensorflow.keras.applications.vgg19 as vgg19
2.  import tensorflow.keras.preprocessing.image as imagepre
3.  
4.  # 加载预训练模型
5.  model = vgg19.VGG19(weights='E:\\MLDatas\\vgg19_weights_tf_dim_ordering_tf_kernels.h5', include_top=True) # 加载预先下载的模型
6.  # 加载图片并转换为合适的数据形式
7.  image = imagepre.load_img('116.jpg', target_size=(224, 224))
8.  imagedata = imagepre.img_to_array(image)
9.  imagedata = imagedata.reshape((1,) + imagedata.shape)
10.  
11.  imagedata = vgg19.preprocess_input(imagedata)
12.  prediction = model.predict(imagedata) # 分类预测
13.  results = vgg19.decode_predictions(prediction, top=3)
14.  print(results)
15.  #[[('n02113624', 'toy_poodle', 0.6034094), ('n02113712', 'miniature_poodle', 0.34426507), ('n02113799', 'standard_poodle', 0.0124355545)]]

可见,图片为toy poodle的概率最大,为0.6。

02、残差网络

随着网络层次的加深,训练集的损失函数可能会呈现出先下降再上升的现象,称为网络退化(degradation)现象。残差网络(ResNet)[33]提出了抑制梯度消散、网络退化来加速训练收敛的方法,克服了层数多导致的收敛慢、甚至无法收敛的问题,使网络的层数得以增加。

残差单元是残差网络的基本组成部分,它的特点是有一条跨层的短接。图3示例了一个残差单元。该单元有两条传递路径,除了常规的卷积、批标准化、激活处理路径外,还有一条跨层的直接传递路径。

图3 残差单元示例

残差网络一般要由很多残差单元首尾连接而成。残差网络的思想是通过跨层的短接,在误差反向传播时,去掉不变的主体部分,从而突出微小的变化,使得网络对误差更加敏感。通过短接还使得误差消散问题得到了较好的解决。试验结果证明残差网络具有良好的学习效果。

图3所示残差单元在TensorFlow框架下的实现见代码清单2,其中第28行是将两条处理路径传来的数据相加。该代码来自tensorflow.keras.applications包,该包包含了许多经典模型的实现代码,值得读者仔细分析。

代码清单 2残差单元[1]


1.  def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None):
2.     bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
3.    if conv_shortcut:
4.      shortcut = layers.Conv2D(
5.          4 * filters, 1, strides=stride, name=name + '_0_conv')(
6.              x)
7.      shortcut = layers.BatchNormalization(
8.          axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(
9.              shortcut)
10.    else:
11.      shortcut = x
12.    x = layers.Conv2D(filters, 1, strides=stride, name=name + '_1_conv')(x)
13.    x = layers.BatchNormalization(
14.        axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(
15.            x)
16.    x = layers.Activation('relu', name=name + '_1_relu')(x)
17.    x = layers.Conv2D(
18.        filters, kernel_size, padding='SAME', name=name + '_2_conv')(
19.            x)
20.    x = layers.BatchNormalization(
21.        axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(
22.            x)
23.    x = layers.Activation('relu', name=name + '_2_relu')(x)
24.    x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x)
25.    x = layers.BatchNormalization(
26.        axis=bn_axis, epsilon=1.001e-5, name=name + '_3_bn')(
27.            x)
28.    x = layers.Add(name=name + '_add')([shortcut, x])
29.    x = layers.Activation('relu', name=name + '_out')(x)
30.    return x

03、源码展示

链接: https://pan.baidu.com/s/1kG88Z39otL7GrVhiSOJlqA?pwd=6yb8 提取码: 6yb8

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/5331.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言实现堆

注:这里我们所实现的是大根堆(即父节点不小于子节点的堆) 目录 一,堆的介绍 二,堆结构的创建 三,接口实现 1,初始化与销毁 2,数据的插入与删除 3,其他接口 一&…

力扣:最后一个单词的长度(详解)

前言:内容包括:题目,代码实现,大致思路,代码解读 题目: 给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组…

基于springboot实现留守儿童爱心网站平台【源码+论文】

基于springboot实现留守儿童爱心网站演示开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包&…

qt 关于QtXlsx的编译 使用

版本:qt 5.14.0 qt creator4.11.0 平时用mingw编译器 QtXlsx源码下载地址:QtXlsxWriter:https://github.com/dbzhang800/QtXlsxWriter 在Qt的XLSX模块提供了一组类来读写Excel文件。它不需要 Microsoft Excel,可以…

EM7电磁铁的技术参数

电磁铁可以通过更换电磁铁极头在一定范围内改善磁场的大小和磁场的均匀度 ,并且可以通过调整极头间距改变磁场的大小。主要用于磁滞现象研究、磁化系数测量、霍尔效应研究、磁光实验、磁场退火、核磁共振、电子顺磁共振、生物学研究、磁性测量、磁性材料取向、磁性产…

期货黄金交易平台重要吗?有哪些显著的期货黄金交易平台优势?

黄金交易平台就是可以在其上面做黄金买卖交易的系统,是一种依靠行业应用软件而搭建的平台,里面会包含一些交易指标、趋势图表、K线。市场上的黄金交易平台很多,只有正规的期货黄金交易平台才值得信任。主要还是因为期货黄金交易平台优势所决定…

【五】线程安全VS线程不安全

1. Java内存模型的特征 Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立。下面逐个看下哪些操作实现这三个特性: 1.1 原子性(Atomicity) 由Java内存模型来直接保证的原子性变量操作包括 read、load、assig…

【机器学习】线性回归

文章目录前言一、单变量线性回归1.导入必要的库2.读取数据3.绘制散点图4.划分数据5.定义模型函数6.定义损失函数7.求权重向量w7.1 梯度下降函数7.2 最小二乘法8.训练模型9.绘制预测曲线10.试试正则化11.绘制预测曲线12.试试sklearn库二、多变量线性回归1.导入库2.读取数据3.划分…

Linux--抓包-连接状态

目录 一、TCP: 1.抓包: 2.工具: 3.状态: 4.命令: 三次握手: 应答确认: 四次挥手 一、TCP: 面向连接、可靠的、流式服务 1.抓包: 三次握手、四次挥手 2.工具&…

数据库:Redis数据库

目录 一、数据库类型 1、关系型数据库 2、非关系型数据库 3、关系型非关系型区别 二、Redis数据库 1、什么是Redis 3、Redis特点 4、Redis为什么读写快 5、部署Redis数据库 6、redis管理 7、Redis数据库五大类型 8、Redis数据库基础使用 9、redis五大类型增删查 …

数据库管理-第六十三期 烦(20230327)

数据库管理 2023-03-27第六十三期 烦1 跨版本PDB迁移补遗2 BUGs3 就低不就高总结第六十三期 烦 上个周末呢,因为一些客户的事情整的一个周末都在干活,其中两天还搞到的晚上12点,几乎没咋休息,现在感觉贼累,继续写文章…

为什么我们认为GPT是一个技术爆炸

从23年初,ChatGPT火遍全球,通过其高拟人化的回答模式,大幅提升了人机对话的体验和效率,让用户拥有了一个拥有海量知识的虚拟助手,根据UBS发布的研究报告显示,ChatGPT在1月份的月活跃用户数已达1亿&#xff…

Java实习生------Redis哨兵机制详解⭐⭐⭐

“无数的我们被世界碾压成一缩黑团,无数的我们试图与世界抗争到底”🌹 参考资料:图解redis 目录 什么是哨兵机制? 哨兵机制主要干了哪三件事? 哨兵监控主节点的过程是怎样的? 判断主节点故障之后&…

Servlet---服务端小应用程序(服务器端的小组件)

零.前置知识 1.tomcat—服务器容器 tomcat就是一个服务器容器,通常说的将项目部署到服务器,就是将项目部署到tomcat中(将项目放到tomcat容器中)。 浏览器向服务器发送一个HTTP请求,请求访问demo09.html页面&#xf…

【Linux】进程相关笔记

文章目录查看进程方式批量化注释fork进程状态R状态S状态D状态T状态t状态退出码问题X&&Z状态僵尸进程的危害makefile 新知识孤儿进程查看进程方式 ls /proc ls /proc/13045 (可以查看到之情进程的属性) ps axj | head -1 && ps ajx | grep myprocess(文件名) |…

垃圾回收之CMS、G1、ZGC对比

ZGC(The Z Garbage Collector)是JDK 11中推出的一款低延迟垃圾回收器,它的设计目标包括: 停顿时间不超过10ms;停顿时间不会随着堆的大小,或者活跃对象的大小而增加;支持8MB~4TB级别的堆&#x…

【C++】string类的模拟实现

目录 一、前言 二、模拟实现 1、构造函数 2、拷贝构造函数 3、operator 4、operator[] 5、迭代器 6、string类的比较 7、string类的扩容 7.1、reserve 7.2、resize 8、string类的尾插 8.1、push_back 与 append 8.2、operator 9、string类的insert 9.1、插入字符…

deepin15.11无法正常输入汉字问题的解决

1,起因 本来是sougou输入法 但是由于自己突发奇想 在那瞎折腾 一不小心把配置给弄坏了 就再也回不到之前可以正常打印汉字的状态 历经两个小时的折腾 总算是又能输入汉字啦 耗费两个多小时 对当下的我来说时间成本着实有点高 但是把问题给解决了 总算还是有点收获 平时的学习过…

注意力机制 | CNN-BiLSTM-Attention基于卷积-双向长短期记忆网络结合注意力机制多输入单输出回归预测(Matlab程序)

注意力机制 | CNN-BiLSTM-Attention基于卷积-双向长短期记忆网络结合注意力机制多输入单输出回归预测(Matlab程序) 目录 注意力机制 | CNN-BiLSTM-Attention基于卷积-双向长短期记忆网络结合注意力机制多输入单输出回归预测(Matlab程序)预测结果评价指标基本介绍程序设计参…

qt 编译器 调试器

电脑版本:win10 64位 qt版本:based on Qt 5.14.0(msvc 2017, 32位) Qt Creator 4.11.0 qt安装包:qt-opensource-windows-x86-5.9.9.exe 安装过程一路next,安装完成后,默认使用的…
最新文章