网络层:IP协议/Mac协议

IP协议

主机: 配有IP地址, 但是不进行路由控制的设备; 路由器: 即配有IP地址, 又能进行路由控制; 节点: 主机和路由器的统 称;

IP = 目标网络(前半部分) +  目标主机(后半部分)

IP层的核心:IP地址定位主机(定点发送数据到指定主机的指定进程)

IP报头

 4位版本号(version): 指定IP协议的版本, 对于IPv4来说, 就是4.

4位头部长度(header length): IP头部的长度是多少个32bit, 也就是 length * 4 的字节数. 4bit表示最大 的数字是15, 因此IP头部最大长度是60字节.

8位服务类型(Type Of Service): 3位优先权字段(已经弃用), 4位TOS字段, 和1位保留字段(必须置为0). 4位 TOS分别表示: 最小延时, 最大吞吐量, 最高可靠性, 最小成本. 这四者相互冲突, 只能选择一个. 对于 ssh/telnet这样的应用程序, 最小延时比较重要; 对于ftp这样的程序, 最大吞吐量比较重要.

16位总长度(total length): IP数据报整体占多少个字节. 16位标识(id): 唯一的标识主机发送的报文. 如果IP报文在数据链路层被分片了, 那么每一个片里面的这个 id都是相同的.

3位标志字段: 第一位保留(保留的意思是现在不用, 但是还没想好说不定以后要用到). 第二位置为1表示禁 止分片, 这时候如果报文长度超过MTU, IP模块就会丢弃报文. 第三位表示"更多分片", 如果分片了的话, 最后一个分片置为1, 其他是0. 类似于一个结束标记.

13位分片偏移(framegament offset): 是分片相对于原始IP报文开始处的偏移. 其实就是在表示当前分片 在原报文中处在哪个位置. 实际偏移的字节数是这个值 * 8 得到的. 因此, 除了最后一个报文之外, 其他报 文的长度必须是8的整数倍(否则报文就不连续了).

8位生存时间(Time To Live, TTL): 数据报到达目的地的最大报文跳数. 一般是64. 每次经过一个路由, TTL -= 1, 一直减到0还没到达, 那么就丢弃了. 这个字段主要是用来防止出现路由循环

8位协议: 表示上层协议的类型

16位头部校验和: 使用CRC进行校验, 来鉴别头部是否损坏.

32位源地址和32位目标地址: 表示发送端和接收端. 

网段划分

IP地址分为两个部分, 网络号和主机号

网络号: 保证相互连接的两个网段具有不同的标识;

主机号: 同一网段内, 主机之间具有相同的网络号, 但是必须有不同的主机号;

路由器拥有两个IP地址,既属于A子网,又属于B子网。 

不同的子网其实就是把网络号相同的主机放到一起.

如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网 中的其他主机重复

在子网中管理子网的IP的设备是路由器,使用DHCP技术给上网设备分配IP地址,. 因此路由器也可以看做一个DHCP服务器。

过去曾经提出一种划分网络号和主机号的方案 , 把所有IP 地址分为五类, 如下图所示

但是这种划分太粗略了,浪费了大量IP地址。

针对这种情况提出了新的划分方案, 称为CIDR(Classless Interdomain Routing):

目标网络和子网掩码在路由器中配置。

引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;

子网掩码也是一个32位的正整数. 通常用一串 "0" 来结尾;

将IP地址和子网掩码进行 "按位与" 操作, 得到的结果就是网络号;

网络号和主机号的划分与这个IP地址是A类、B类还是C类无关; 

特殊的IP地址

将IP地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网;

将IP地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数 据包;

127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1

路由器的IP地址 = 网络标识 + 1

私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上 使用任意的IP地址都 可以,但是RFC 1918规定了用于组建局域网的私有IP地址

10.*,前8位是网络号,共16,777,216个地址

172.16.到172.31.,前12位是网络号,共1,048,576个地址

192.168.*,前16位是网络号,共65,536个地址

包含在这个范围中的, 都成为私有IP, 其余的则称为全局IP(或公网IP);

一个路由器可以配置两个IP地址, 一个是WAN口IP, 一个是LAN口IP(子网IP).

路由器LAN口连接的主机, 都从属于当前这个路由器的子网中.

不同的路由器, 子网IP其实都是一样的(通常都是192.168.1.1). 子网内的主机IP地址不能重复. 但是子网之 间的IP地址就可以重复了.

每一个家用路由器, 其实又作为运营商路由器的子网中的一个节点. 这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN口IP就是一个公网IP了.

子网内的主机需要和外网进行通信时, 路由器将IP首部中的IP地址进行替换(替换成WAN口IP), 这样逐级 替换, 最终数据包中的IP地址成为一个公网IP. 这种技术称为NAT(Network Address Translation,网络地 址转换).

如果希望我们自己实现的服务器程序, 能够在公网上被访问到, 就需要把程序部署在一台具有外网IP的服 务器上. 这样的服务器可以在阿里云/腾讯云上进行购买.

总结:为了解决IP地址不足的问题,路由器通过DHCP技术为主机动态分配IP地址,以及NAT地址转化技术间接解决了问题。也有直接解决问题的方法IPv6。 

路由

当IP数据包, 到达路由器时, 路由器会先查看目的IP;

路由器决定这个数据包是能直接发送给目标主机, 还是需要发送给下一个路由器;

依次反复, 一直到达目标IP地址;

那么如何判定当前这个数据包该发送到哪里呢? 这个就依靠每个节点内部维护一个路由表;

路由表可以使用route命令查看

如果目的IP命中了路由表, 就直接转发即可;

路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配 时,就按缺省路由条目规定的接口发送到下一跳地址。 

 数据链路层

以太网帧格式

源地址和目的地址是指网卡的硬件地址(也叫MAC地址), 长度是48位,是在网卡出厂时固化的;

帧协议类型字段有三种值,分别对应IP、ARP、RARP; 帧末尾是CRC校验码。 

MTU

以太网帧中的数据长度规定最小46字节,最大1500字节,ARP数据包的长度不够46字节,要在后面补填充 位;

最大值1500称为以太网的最大传输单元 (MTU),不同的网络类型有不同的MTU;

如果一个数据包从以太网路由到拨号链路上,数据包长度大于拨号链路的MTU了,则需要对数据包进行分 片(fragmentation);

不同的数据链路层标准的MTU是不同的;

TCP的一个数据报也不能无限大, 还是受制于MTU. TCP的单个数据报的最大消息长度, 称为MSS(Max Segment Size)

使用ifconfig命令, 即可查看ip地址, mac地址, 和MTU.

ARP协议

ARP协议建立了主机 IP地址 和 MAC地址 的映射关系.

在网络通讯时,源主机的应用程序知道目的主机的IP地址和端口号,却不知道目的主机的硬件地址;

数据包首先是被网卡接收到再去处理上层协议的,如果接收到的数据包的硬件地址与本机不符,则直接丢 弃; 因此在通讯前必须获得目的主机的硬件地址;

注意到源MAC地址、目的MAC地址在以太网首部和ARP请求中各出现一次,对于链路层为以太网的情况 是多余的,但如果链路层是其它类型的网络则有可能是必要的。

硬件类型指链路层网络类型,1为以太网;

协议类型指要转换的地址类型,0x0800为IP地址;

硬件地址长度对于以太网地址为6字节;

协议地址长度对于和IP地址为4字节;

op字段为1表示ARP请求,op字段为2表示ARP应答。 

ARP请求类似于广播形式,ARP响应可以被伪造。

源主机发出ARP请求,询问“IP地址是192.168.0.1的主机的硬件地址是多少”, 并将这个请求广播到本地网 段(以太网帧首部的硬件地址填FF:FF:FF:FF:FF:FF表示广播);

目的主机接收到广播的ARP请求,发现其中的IP地址与本机相符,则发送一个ARP应答数据包给源主机,将自 己的硬件地址填写在应答包中;

每台主机都维护一个ARP缓存表,可以用arp -a命令查看。

缓存表中的表项有过期时间(一般为20分钟),如 果20分钟内没有再次使用某个表项,则该表项失效,下次还要发ARP请求来获得目的主机的硬件地址 

DNS(Domain Name System) 

DNS是一整套从域名映射到IP的系统

DNS系统:

一个组织的系统管理机构 , 维护系统内的每个主机的IP和主机名的对应关系.

如果新计算机接入网络, 将这个信息注册到数据库中;

用户输入域名的时候, 会自动查询DNS服务器, 由DNS服务器检索数据库, 得到对应的IP地址.

ICMP协议

ICMP主要功能包括:

确认IP包是否成功到达目标地址.

通知在发送过程中IP包被丢弃的原因. ICMP也是基于IP协议工作的.

但是它并不是传输层的功能, 因此人们仍然把它归结为网络层协议;

ICMP只能搭配IPv4使用. 如果是IPv6的情况下, 需要是用ICMPv6;

ping命令 

注意, 此处 ping 的是域名, 而不是url! 一个域名可以通过DNS解析成IP地址.

ping命令不光能验证网络的连通性, 同时也会统计响应时间和TTL(IP包中的Time To Live, 生存周期).

ping命令会先发送一个 ICMP Echo Request给对端; 对端接收到之后, 会返回一个 ICMP Echo Reply;

 

traceroute命令 也是基于ICMP协议实现, 能够打印出可执行程序主机, 一直到目标主机之前经历多少路由器. 

NAT技术

NAT能够将私有IP对外通信时转为全局IP. 也就是就是一种将私有IP和全局IP相互转化的技术方法

 NAPT

那么问题来了, 如果局域网内, 有多个主机都访问同一个外网服务器, 那么对于服务器返回的数据中, 目的IP都是相同 的. 那么NAT路由器如何判定将这个数据包转发给哪个局域网的主机? 这时候NAPT来解决这个问题了. 使用IP+port来建立这个关联关系

如果内网主机没有访问过外网, 外网不能直接访问内网主机。

正向代理和反向代理 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/54005.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Socks IP轮换:为什么是数据挖掘和Web爬取的最佳选择?

在数据挖掘和Web爬取的过程中,IP轮换是一个非常重要的概念。数据挖掘和Web爬取需要从多个网站或来源获取数据,而这些网站通常会对来自同一IP地址的请求进行限制或封锁。为了避免这些问题,数据挖掘和Web爬取过程中需要使用Socks IP轮换技术。在…

《向量数据库指南》——如何持久化存储 LlamaIndex 向量索引?

随着 AGI 时代的到来,越来越多的开发者开始思考如何有效利用大模型,不过,大家在构建 LLM 应用时普遍会面临三大挑战: LLM 的使用成本高昂LLM 无法及时提供最新信息LLM 缺乏特定专业领域的知识 针对上述问题,业界主流的做法是采用两种主要框架:微调和缓存 + 注入。 …

集团MySQL的酒店管理系统

酒店管理系统 概述 基于Spring Spring MVC MyBatis的酒店管理系统,主要实现酒店客房的预定、入住以及结账等功能。使用Maven进行包管理。 用户端主要功能包括: 登录注册、客房预订、客房评论(编写评论和查看评论) 后台管理主要…

如何在 Ubuntu 22.04 下编译 StoneDB for MySQL 8.0 | StoneDB 使用教程 #1

作者:双飞(花名:小鱼) 杭州电子科技大学在读硕士 StoneDB 内核研发实习生 ❝ 大家好,我是 StoneDB 的实习生小鱼,目前正在做 StoneDB 8.0 内核升级相关的一些事情。刚开始接触数据库开发没多久&#xff0c…

Linux 学习记录59(ARM篇)

Linux 学习记录59(ARM篇) 本文目录 Linux 学习记录59(ARM篇)一、IIC总线1. 概念2. IIC总线硬件连接 二、系统框图三、IIC时序1. 起始信号 / 停止信号2. 数据传输信号3. 应答信号 / 非应答信号4. 寻址信号 四、IIC协议1. 主机给从机发送一个字节(写)2. 主机给从机发送多个连续字…

MySQL 的 Join 查询及 Hash Join 优化 | StoneDB 技术分享会 #3

StoneDB开源地址 https://github.com/stoneatom/stonedb 设计:小艾 审核:丁奇、宇亭 编辑:宇亭 作者一:徐鑫强(花名:无花果) 电子科技大学-计算机技术-在读硕士、StoneDB 内核研发实习生 作…

Android 卡顿分析与布局优化

一、什么是卡顿?或者说我们怎么感知APP卡顿? 这里面涉及到android UI渲染机制,我们先了解一下android UI是怎么渲染的,android的View到底是如何一步一步显示到屏幕上的? android系统渲染页面流程: 1&…

重新审视MHA与Transformer

本文将基于PyTorch源码重新审视MultiheadAttention与Transformer。事实上,早在一年前博主就已经分别介绍了两者:各种注意力机制的PyTorch实现、从零开始手写一个Transformer,但当时的实现大部分是基于d2l教程的,这次将基于PyTorch…

使用javax.validation.constraints进行数据验证

使用javax.validation.constraints进行数据验证 在Java应用中,数据的验证是一个很重要的部分,特别是在接收用户输入或处理外部数据时。为了简化和标准化数据验证的过程,Java提供了javax.validation.constraints包,其中包含一系列注…

乳腺癌CT影像数据的深度学习:R语言与ANN神经网络构建高性能分类诊断模型

一、引言 乳腺癌是全球最常见的女性恶性肿瘤之一,也影响着男性的健康。据统计,每年有数百万人被诊断出患有乳腺癌[1]。乳腺癌的早期检测和准确诊断对于治疗和预后至关重要。然而,乳腺癌的早期诊断面临许多挑战,如图像解读的主观性…

uniapp 微信小程序:v-model双向绑定问题(自定义 props 名无效)

uniapp 微信小程序:v-model双向绑定问题(自定义 props 名无效) 前言问题双向绑定示例使用 v-model使用 v-bind v-on使用 sync 修饰符 参考资料 前言 VUE中父子组件传递数据的基本套路: 父传子 props子传父 this.$emit(事件名, …

Linux安装VScode

从本篇开始,打算有时间就写写在VScode中编写一些ros相关的案例程序用于学习记录。本篇是如何在Linux安装VScode的第一篇。 一、下载VScode 在Linux中打开浏览器输入:https://code.visualstudio.com/Download,选择与你电脑相匹配的版本下载&…

AssertionError: CUDA_HOME does not exist, unable to compile CUDA op(s)

安装deepspeed的时候出现如下错误: 检查是否有CUDA: 根据提示安装: 安装完之后检测,重新安装,成功安装。 参考资料 A100单机多卡大模型训练踩坑记录(CUDA环境、多GPU卡住且显存100%)

socket 基础

Socket是什么呢? ① Socket通常也称作“套接字”,用于描述IP地址和端口,是一个通信链的句柄。应用程序通常通过“套接字”向网络发出请求或者应答网络请求。 ② Socket是连接运行在网络上的两个程序间的双向通信的端点。 ③ 网络通讯其实指…

STM32基础回顾

文章目录 单片机编程的原理GPIO中断EXTI外部中断定时器中断、串口中断 定时器定时器中断配置过程通用定时器输出比较功能:PWM波的生成定时器的输入捕获功能主从触发模式PWMI模式 定时器的编码器接口 DMA简介通信接口USART软件配置流程:1、仅发数据的配置…

校园跑腿小程序功能分享

提起校园跑腿小程序大家都不陌生,尤其是对上大学的伙伴们来说,更是熟悉得不能再熟悉了,和我们的生活息息相关,密不可分。 对于现在的年轻人来说,网购是非常简单和方便的一种购物方式,随之快递也会越来越多。在我们国家…

java版本spring cloud 企业工程系统管理 工程项目管理系统源码

 Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个&…

self-attention笔记

self-attention 对于self-attention的理解 对于self-attention,我们直觉可能会觉得是从一个大的数据中,将我们的注意力集中在我们感兴趣的区域里, 但通过self-attention的原理可以发现,其原理更像是对于一个区域(一个…

八大排序算法--希尔排序(动图理解)

目录 希尔排序 概念 算法思路 动画演示 代码如下 复杂度分析 时间复杂度测试 运行结果 完整代码 创作不易,如果本篇博客对您有一定的帮助,大家记得留言点赞哦。 希尔排序 概念 希尔排序是插入排序的一种,是对直接插入排序的优化。其…

uniapp小程序,根据小程序的环境版本,控制的显页面功能按钮的示隐藏

需求:根据小程序环境控制控制页面某个功能按钮的显示隐藏; 下面是官方文档和功能实现的相关代码: 实现上面需要,用到了uni.getAccountInfoSync(): uni.getAccountInfoSync() 是一个 Uniapp 提供的同步方法&#xff0c…
最新文章