文献速递:深度学习肝脏肿瘤诊断---双能量CT深度学习放射组学预测大梁状大块型肝细胞癌

Title 

题目

Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma

双能量CT深度学习放射组学预测大梁状大块型肝细胞癌

Background

背景

It is unknown whether the additional information provided by multiparametric dual-energy CT (DECT) could improve the noninvasive diagnosis of the aggressive macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC).

目前尚不清楚多参数双能量CT(DECT)提供的额外信息是否能改善侵袭性大梁状大块型(MTM)肝细胞癌(HCC)的非侵入性诊断。

Conclusions

结论

A DL radiomics nomogram derived from multiparametric DECT accurately predicted the MTM subtype in patients with HCC.

从多参数双能量CT(DECT)衍生的DL放射组学列线图准确预测了患有肝细胞癌(HCC)的患者中的大梁状大块型(MTM)亚型。

Results

结果

A total of 262 patients were included (mean age, 54 years ± 12 [SD]; 225 men [86%]; training data set, n = 146 [56%]; internal test data set, n = 35 [13%]; external test data set, n = 81 [31%]). The DL radiomics nomogram better predicted MTM than the clinical-radiologic model (AUC = 0.91 vs 0.77, respectively, for the training set [P < .001], 0.87 vs 0.72 for the internal test data set [P = .04], and 0.89 vs 0.79 for the external test data set [P = .02]), with similar sensitivity (80% vs 87%, respectively; P = .63) and higher specificity (90% vs 63%; P < .001) in the external test data set. The predicted positive MTM groups based on the DL radiomics nomogram had shorter recurrence-free survival than predicted negative MTM groups in all three data sets (training data set, P = .04; internal test data set, P = .01; and external test data set, P = .03).

共计262名患者被纳入研究(平均年龄54岁 ± 12 [标准差];225名男性 [86%];训练数据集,n = 146 [56%];内部测试数据集,n = 35 [13%];外部测试数据集,n = 81 [31%])。DL放射组学列线图在预测大梁状大块型(MTM)方面比临床-放射学模型表现更好(训练集的AUC为0.91对比0.77 [P < .001],内部测试数据集的0.87对比0.72 [P = .04],外部测试数据集的0.89对比0.79 [P = .02]),在外部测试数据集中敏感性相似(分别为80%对比87%;P = .63)且特异性更高(90%对比63%;P < .001)。基于DL放射组学列线图预测的阳性MTM组在所有三个数据集中的无复发生存期均短于预测的阴性MTM组(训练数据集,P = .04;内部测试数据集,P = .01;外部测试数据集,P = .03)。

Method

方法

Patients with histopathologic examination–confirmed HCC who underwent contrast-enhanced DECT between June 2019 and June 2022 were retrospectively recruited from three independent centers (center 1, training and internal test data set; centers 2 and 3, external test data set). Radiologic features were visually analyzed and combined with clinical information to establish a clinical-radiologic model. Deep learning (DL) radiomics models were based on DL features and handcrafted features extracted from virtual monoenergetic images and material composition images on dual phase using binary least absolute shrinkage and selection operators. A DL radiomics nomogram was developed using multivariable logistic regression analysis. Model performance was evaluated with the area under the receiver operating characteristic curve (AUC), and the log-rank test was used to analyze recurrence-free survival.

2019年6月至2022年6月间,从三个独立中心(中心1为训练和内部测试数据集;中心2和3为外部测试数据集)回顾性招募了接受增强双能量CT(DECT)检查且经病理检查确认的肝细胞癌(HCC)患者。放射学特征通过视觉分析并结合临床信息建立临床-放射学模型。深度学习(DL)放射组学模型基于DL特征和从双相使用二进制最小绝对收缩和选择算子提取的虚拟单能量图像和材料成分图像的手工特征。使用多变量逻辑回归分析开发了一个DL放射组学列线图。模型性能通过接收者操作特征曲线(AUC)下面积评估,并使用对数秩检验分析无复发生存率。

Figure

图片

Figure 1: Flowchart of patient inclusion and exclusion in this retrospective multicenter study. DECT = dual-energy CT, HCC = hepatocellular carcinoma, MTM = macrotrabecular-massive.

图1:本回顾性多中心研究中患者纳入和排除的流程图。DECT = 双能量CT,HCC = 肝细胞癌,MTM = 大梁状大块型。

图片

Figure 2: Diagram shows workflow for radiomics and deep learning (DL) feature extraction, parameter map selection, DL radiomics model construction, DL radiomics nomogram development, and analysis of results. AFP = α-fetoprotein, ALB = albumin, AP = arterial phase, AST = aspartate aminotransferase, DCA = decision curve analysis, IA = intratumoral artery, MTM = macrotrabecular-massive, PLT = platelet count, PVP = portal venous phase, ROC = receiver operating characteristic, VMI = virtual monoenergetic image, Zeff = effective atomic number.

图2:图解展示了放射组学和深度学习(DL)特征提取、参数图选择、DL放射组学模型构建、DL放射组学列线图开发及结果分析的工作流程。AFP = α-胎蛋白,ALB = 白蛋白,AP = 动脉相,AST = 天冬氨酸转氨酶,DCA = 决策曲线分析,IA = 肿瘤内动脉,MTM = 大梁状大块型,PLT = 血小板计数,PVP = 门静脉相,ROC = 接收者操作特征,VMI = 虚拟单能图像,Zeff = 有效原子序数。

图片

Figure 3: Example arterial phase (AP) virtual monoenergetic images (VMIs), AP electron density maps, portal venous phase (PVP) iodine density maps, and corresponding heat maps in three patients with hepatocellular carcinoma (HCC). (A) Images in a 65-year-old man with positive macrotrabecular-massive (MTM) HCC. (B) Images in a 59-year-old man with negative MTM HCC. (C) Images in a 47-year-old man with negative MTM HCC. Corresponding heat maps demonstrate that the deep learning–extracted radiomics features that were weighted highest, representing the areas of greatest interest for the model, were located inside the tumor. Highly weighted areas of the AP VMI map and AP electron density map were mostly located in the region associated with obvious tumor vessels (indicated by arrowheads in A) and tumor parenchyma containing tumor vessels (arrows in A), respectively. Highly weighted areas of PVP iodine density maps were located not only in the tumor parenchyma but also in the region with necrosis (in A).

图3:三名肝细胞癌(HCC)患者的示例动脉相(AP)虚拟单能图像(VMI)、AP电子密度图、门静脉相(PVP)碘密度图及相应热图。(A) 一位65岁男性大梁状大块型(MTM)HCC阳性患者的图像。(B) 一位59岁男性MTM HCC阴性患者的图像。(C) 一位47岁男性MTM HCC阴性患者的图像。相应的热图显示,通过深度学习提取的放射组学特征中权重最高的,代表模型最感兴趣的区域,位于肿瘤内部。AP VMI图和AP电子密度图中的高权重区域大多位于与明显的肿瘤血管相关的区域(在A中以箭头标示)及包含肿瘤血管的肿瘤实质内(在A中以箭头标示),分别。PVP碘密度图的高权重区域不仅位于肿瘤实质中,也位于含有坏死的区域(在A中以星号标示)

图片

Figure 4: Example feature maps in a 58-year-old man negative for macrotrabecular-massive (MTM) hepatocellular carcinoma (HCC) (top row of A–C) and a 62-yearold woman positive for MTM HCC (bottom row of A–C). For each row, the image to the right shows an approximately two times magnified view of the area outlined by a red box in the image on the left. The red box delineates the region with HCC. The additional images display voxel-based radiomics feature mapping of models for the top three handcrafted radiomics features with high least absolute shrinkage and selection operator weight coefficients. In these images, the colors represent normalized feature values. Bluish colors indicate lower feature values, and reddish colors represent higher feature values. (A) Arterial phase (AP) virtual monoenergetic images (VMIs) from both patients. The top three handcrafted radiomics features with high weight coefficients are busyness, high gray level zone emphasis (HGLZE), and long run low gray level emphasis (LRLGLE). Busyness is a feature calculated using the Laplacian of Gaussian filter (with sigma values of 1.0 mm) based on the neighboring gray tone difference matrix; high gray level zone emphasis is a feature calculated using the wavelet filter (with low-high-low applied across three dimensions) based on the gray level size zone matrix. Long run low gray level emphasis is a feature calculated using the Laplacian of Gaussian filter (with sigma values of 5.0 mm) based on the gray level run length matrix. (B)AP electron density maps from both patients. The top three handcrafted radiomics features with high weight coefficients are cluster tendency, 10 percentile, and correlation. Cluster tendency is a feature calculated using the wavelet filter (with low-low-low applied across three dimensions) based on the gray level co-occurrence matrix, 10 percentile is a first-order statistical feature that represents 10% of the image intensity values are below this feature value and is calculated after applying a Laplacian of Gaussian filter (with sigma values of 5.0 mm), and correlation is a feature derived from the gray level co-occurrence matrix and measures the linear dependency of gray levels between neighboring pixels in the original image. (Fig 4 continues).

图4:一位58岁男性大梁状大块型(MTM)肝细胞癌(HCC)阴性患者(A–C顶行)和一位62岁女性MTM HCC阳性患者(A–C底行)的示例特征图。每行中,右侧的图像显示了左侧图像红色框内区域的约两倍放大视图。红色框标出了含有HCC的区域。额外的图像展示了基于体素的放射组学特征映射,这些特征映射基于前三个手工制作的放射组学特征,这些特征具有高的最小绝对收缩和选择算子权重系数。在这些图像中,颜色代表标准化的特征值。蓝色调表示较低的特征值,红色调表示较高的特征值。(A) 两位患者的动脉相(AP)虚拟单能图像(VMI)。前三个具有高权重系数的手工放射组学特征是繁忙度、高灰度级区域强调(HGLZE)和长程低灰度级强调(LRLGLE)。繁忙度是使用高斯滤波器的拉普拉斯(带有1.0毫米的西格玛值)根据相邻灰度差异矩阵计算的特征;高灰度级区域强调是使用小波滤波器(在三个维度上应用低高低)根据灰度级大小区域矩阵计算的特征。长程低灰度级强调是使用高斯滤波器的拉普拉斯(带有5.0毫米的西格玛值)根据灰度级运行长度矩阵计算的特征。(B) 两位患者的AP电子密度图。前三个具有高权重系数的手工放射组学特征是群集倾向、10百分位数和相关性。群集倾向是使用小波滤波器(在三个维度上应用低低低)根据灰度级共现矩阵计算的特征;10百分位数是一种一阶统计特征,代表图像强度值中有10%低于此特征值,是在应用高斯滤波器的拉普拉斯(带有5.0毫米的西格玛值)后计算得出的;相关性是从灰度级共现矩阵派生的特征,用于衡量原始图像中相邻像素间灰度级的线性依赖性。(图4继续)。

图片

Figure 4 (continued): (C) Portal venous phase (PVP) iodine density maps from both patients. The top three handcrafted radiomics features with high weight coefficients are kurtosis, long run high gray level emphasis (LRHGLE), and joint entropy. Kurtosis is a first-order statistical feature and calculated after applying a wavelet filter (with lowlow-high applied across three dimensions), joint entropy is a feature calculated using the Laplacian of Gaussian filter (with sigma values of 5.0 mm) based on the gray level co-occurrence matrix, and long run high gray level emphasis is a feature calculated using the wavelet filter (with low-high-low applied across three dimensions) based on the gray level run length matrix. The features of the patient with positive MTM showed higher heterogeneity or textual pattern complexity within tumors than those of the patient with negative MTM. DL = deep learning(续)

图4:(C) 两位患者的门静脉相(PVP)碘密度图。前三个具有高权重系数的手工放射组学特征是峰度、长程高灰度级强调(LRHGLE)和联合熵。峰度是一种一阶统计特征,在应用小波滤波器(在三个维度上应用低低高)后计算得出;联合熵是使用高斯滤波器的拉普拉斯(带有5.0毫米的西格玛值)根据灰度级共现矩阵计算的特征;长程高灰度级强调是使用小波滤波器(在三个维度上应用低高低)根据灰度级运行长度矩阵计算的特征。MTM阳性患者的特征显示出比MTM阴性患者更高的异质性或肿瘤内部的纹理模式复杂性。DL = 深度学习。

图片

Figure 5: Deep learning (DL) radiomics nomogram and the calibration curves based on this model from the three patient data sets. (A) DL radiomics nomogram for predicting macrotabecular-massive (MTM) hepatocellular carcinoma developed based on the training data set (n = 146). The nomogram considers the arterial phase (AP) virtual monoenergetic image (VMI) model output score, the AP electron density map model output score, the portal venous phase (PVP) iodine density map model output score, and α-fetoprotein (AFP) levels of 100 ng/mL or less or more than 100 ng/mL. The points for each of these variables correspond with the top points bar with a scale of 0–100. Then, the four points are summed to calculate the total points. The predicted probability of MTM is obtained by mapping the total point to the total points bar and the probability of MTM bar. (B–D) Calibration curves of the DL radiomics nomogram for predicting MTM subtype status in the training data set (B), internal test data set (C), and external data set (D). In B–D*, the red line represents the initial performance of the model without any corrections. The blue line illustrates the model’s calibration after addressing the observed bias. The black line signifies a scenario in which the predicted probabilities perfectly align with the observed probabilities.

图5:基于三个患者数据集的深度学习(DL)放射组学列线图及其校准曲线。(A) 基于训练数据集(n* = 146)开发的用于预测大梁状大块型(MTM)肝细胞癌的DL放射组学列线图。该列线图考虑了动脉相(AP)虚拟单能图像(VMI)模型输出分数、AP电子密度图模型输出分数、门静脉相(PVP)碘密度图模型输出分数以及α-胎蛋白(AFP)水平是否100 ng/mL以下或超过100 ng/mL。这些变量的每一个都与顶部分数条对应,分数条的刻度为0-100。然后,将这四个分数相加以计算总分。通过将总分映射到总分条和MTM可能性条上,获得MTM的预测概率。(B–D) DL放射组学列线图在训练数据集(B)、内部测试数据集(C)和外部数据集(D)中预测MTM亚型状态的校准曲线。在B–D中,红线代表模型在未进行任何校正的初始性能。蓝线显示了解决观察到的偏差后模型的校准情况。黑线表示预测概率与观察概率完全对齐的情况。

图片

Figure 6: Diagnostic performance of the deep learning (DL) radiomics nomogram. (A) Plots show the DL radiomics nomogram–predicted probabilities and actual diagnosis of macrotabecular-massive (MTM) hepatocellular carcinoma for each individual patient in the training data set (n = 146), internal test data set (n = 35), and external test data set (n = 81). The dotted line represents the cutoff value of 0.23. In the graphs for the training and internal test data sets, the arrow points toward the patient with the predicted probability closest to and less than 0.1%. In the graph for the external test data set, the arrow indicates the patient with a predicted probability closest to and greater than 99.9%. (B) Area under the receiver operating characteristic curve (AUC) analysis shows better performance for predicting MTM using the DL radiomics nomogram (red line) compared with the clinical-radiologic model (green line) in the training data set (P < .001), internal test data set (P = .04), and external test data set (P = .02). (C) Decision curve analysis shows that the DL radiomics nomogram (red line) has a higher net benefit than the clinical-radiologic model (blue line) in the training data set (P = .01). When the threshold probability is more than 20% in the internal test data set and more than 10% in the external test data set, the DL radiomics nomogram has higher net benefits than the clinical-radiologic model (internal test data set, P = .03; external test data set, P = .02). Plots also show that combining the DL radiomics nomogram model with substantial necrosis data (yellow line) does not yield an additional net benefit compared with using the DL radiomics nomogram alone (training data set, P = .96; internal test data set, P = .13; external test data set, P = .98). (D) Kaplan-Meier survival curve analysis shows the differences of recurrence-free survival between predicted negative and positive MTM groups (training data set, P = .04; internal test data set, P = .01; external test data set, P = .03).

图6:深度学习(DL)放射组学列线图的诊断性能。(A) 图表显示了DL放射组学列线图预测的概率和训练数据集(n* = 146)、内部测试数据集(n = 35)及外部测试数据集(n = 81)中每位患者的大梁状大块型(MTM)肝细胞癌的实际诊断。虚线代表0.23的截止值。在训练和内部测试数据集的图表中,箭头指向预测概率最接近且小于0.1%的患者。在外部测试数据集的图表中,箭头指示预测概率最接近且大于99.9%的患者。(B) 接收者操作特征曲线(AUC)分析显示,在训练数据集(P < .001)、内部测试数据集(P = .04)和外部测试数据集(P = .02)中,使用DL放射组学列线图(红线)预测MTM的性能优于临床-放射学模型(绿线)。(C) 决策曲线分析表明,在训练数据集中DL放射组学列线图(红线)的净效益高于临床-放射学模型(蓝线)(P = .01)。当内部测试数据集的阈值概率超过20%,外部测试数据集的阈值概率超过10%时,DL放射组学列线图的净效益高于临床-放射学模型(内部测试数据集,P = .03;外部测试数据集,P = .02)。图表还显示,将DL放射组学列线图模型与显著坏死数据(黄线)结合使用,与单独使用DL放射组学列线图相比没有额外的净效益(训练数据集,P = .96;内部测试数据集,P = .13;外部测试数据集,P = .98)。(D) Kaplan-Meier生存曲线分析显示预测阴性和阳性MTM组之间无复发生存的差异(训练数据集,P = .04;内部测试数据集,P = .01;外部测试数据集,P = .03)。

Table

图片

Table 1: Clinical and Pathologic Characteristics of Patients with HCC in the Training, Internal Test, and External Test Data Sets

表1:训练、内部测试和外部测试数据集中患有肝细胞癌(HCC)患者的临床和病理特征

图片

Table 2: Radiologic Characteristics of Patients with HCC in the Training, Internal Test, and External Test Data Sets

表2:训练、内部测试和外部测试数据集中患有肝细胞癌(HCC)患者的放射学特征

图片

Table 3: Stepwise Multivariable Logistic Regression Analysis for Factors Associated with Odds of MTM HCC to Include *in Prediction Models

表3:用于预测模型中包含的与大梁状大块型肝细胞癌(MTM HCC)发病率相关因素的逐步多变量逻辑回归分析

图片

Table 4: Diagnostic Performance of the DL Radiomics Nomogram and Clinical-Radiologic Model for Predicting MTM HCC

表4:DL放射组学列线图和临床-放射学模型预测大梁状大块型肝细胞癌(MTM HCC)的诊断性能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/553230.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

获取公募基金净值【数据分析系列博文】

摘要 从指定网址获取公募基金净值数据&#xff0c;快速解析并存储数据。 &#xff08;该博文针对自由学习者获取数据&#xff1b;而在投顾、基金、证券等公司&#xff0c;通常有Wind、聚源、通联等厂商采购的数据&#xff09; 导入所需的库&#xff1a;代码导入了一些常用的库…

OpenCV从入门到精通实战(五)——dnn加载深度学习模型

从指定路径读取图像文件、利用OpenCV进行图像处理&#xff0c;以及使用Caffe框架进行深度学习预测的过程。 下面是程序的主要步骤和对应的实现代码总结&#xff1a; 1. 导入必要的工具包和模型 程序开始先导入需要的库os、numpy、cv2&#xff0c;同时导入utils_paths模块&…

PACNet CellNet(代码开源)|bulk数据作细胞分类,评估细胞命运性能的一大利器

文章目录 1.前言2.CellNet2.1CellNet简介2.2CellNet结果 3.PACNet3.1安装R包与加载R包3.2加载数据3.3开始训练和分类3.4可视化分类过程3.5可视化分类结果 4.细胞命运分类和免疫浸润比较 1.前言 今天冲浪看到一个细胞分类性能评估的R包——PACNet&#xff0c;它与转录组分析方法…

【经验总结】Jupyter 配置内核

1. 背景描述 使用 国家超算互联网中心 的服务器&#xff0c;创建 jupyterlab 容器&#xff0c;想在之前 conda 创建的环境中运行&#xff0c;可是不行&#xff0c;进入容器就直接进入 jupyterlab 2. 解决方法 配置内核 2.1 激活环境 conda activate peft2.2 安装内核 pip…

vector类——常用函数模拟(C++)

在上一篇中我们介绍了 string 类的常用函数模拟&#xff0c;接下来我们将开始讲解 vector 类的常用函数的讲解以及模拟实现&#xff0c;相较于 string 来说&#xff0c;vector 的函数不那么冗余&#xff0c;用法也没有那么多&#xff0c;但是在 vector 中的函数使用和模拟中&am…

单链表的实现(单链表的增删查改)

在顺序表中实现数据的增删的操作时&#xff0c;都要把操作位置之后的数据全部移动一遍&#xff0c;操作效率低下。其次是容量固定&#xff08;静态顺序表&#xff09;&#xff0c;虽然在动态顺序表中容量可变&#xff0c;但也会造成空间上的浪费。 单链表就完美解决了上述缺点…

微服务架构与Dubbo

一、微服务架构 微服务架构是一种架构概念&#xff0c;旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。 分布式系统式若干独立系统的集合&#xff0c;但是用户使用起来好像是在使用一套系统。 和微服务对应的是单体式开发&#xff0c;即所有的功能打包在一个WAR…

No spring.config.import property has been defined

运行Springcloud项目出现下面错误&#xff1a; Description: No spring.config.import property has been defined Action: Add a spring.config.importnacos: property to your configuration. If configuration is not required add spring.config.importoptional:nac…

C 排序算法

冒泡排序 冒泡排序&#xff08;英语&#xff1a;Bubble Sort&#xff09;是一种简单的排序算法。它重复地走访过要排序的数列&#xff0c;一次比较两个元素&#xff0c;如果他们的顺序&#xff08;如从大到小、首字母从A到Z&#xff09;错误就把他们交换过来。 过程演示&…

校园综合服务平台V3.9.2 源码修复大部分已知BUG

校园综合服务平台&#xff0c;版本更新至V3.9.1 &#xff0c;源码功能强大&#xff0c;ui 精美&#xff0c; 功能包含但不限于校园跑腿&#xff0c;外卖&#xff0c;组局&#xff0c;圈子&#xff0c;商城&#xff0c;抽奖&#xff0c;投票&#xff0c;团购&#xff0c;二手市场…

ROS学习笔记(12)AEB和TTC的实现

0.前提 在自动驾驶领域有许多关于驾驶安全的措施AEB和TTC就是为了驾驶安全而设计出来的。在这篇文章中我会讲解我对AEB和TTC算法的一些理解。本期ROS学习笔记同时也是ros竞速小车的学习笔记&#xff0c;我会将我的部分代码拿出来进行讲解&#xff0c;让大家更好的理解ttc和aeb…

Zabbix监控系统

一.监控软件的作用: 作为一个运维&#xff0c;需要会使用监控系统查看服务器状态以及网站流量指标&#xff0c;利用监控系统的数据去了解上线发布的结果和网站的健康状态 利用一个优秀的监控软件&#xff0c;我们可以&#xff1a; 对系统不间断实时监控实时反馈系统当前状态…

挣钱新玩法,一文带你掌握流量卡推广秘诀

手机流量卡推广项目是什么&#xff1f;听名字我相信大家就已经猜出来了&#xff0c;就是三大运营商为了开发新用户&#xff0c;发起的有奖推广活动&#xff0c;也是为了长期黏贴用户。在这个活动中&#xff0c;用户通过我们的渠道&#xff0c;就能免费办理低套餐流量卡&#xf…

链表OJ - 7(链表的回文结构)

题目描述&#xff08;来源&#xff09; 对于一个链表&#xff0c;请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法&#xff0c;判断其是否为回文结构。 给定一个链表的头指针A&#xff0c;请返回一个bool值&#xff0c;代表其是否为回文结构。保证链表长度小于等于900。…

【SVG】从零开始绘制条形图

效果图 定义背景色和坐标轴颜色 :root {--cord-color: #2be7ca; }body {background-color: #000;}画坐标轴 画X轴 <!-- 坐标轴 --> <g id"cordinate"><!-- x轴 --><line x1"50" y1"600" x2"900" y2"600&q…

同城货运系统的开发与货运搬家软件的技术性探讨和市场分析

一、市场前景展望 随着城市化进程的加快和电商物流的蓬勃发展&#xff0c;同城货运市场展现出了巨大的潜力。尤其是在快节奏的生活环境中&#xff0c;个人和企业对于快速、便捷、可靠的货运搬家服务需求日益增长。同城货运系统与货运搬家软件作为连接货主与货运司机的桥梁&…

Opengl 坐标系统概述

1.谈到opengl 坐标系统 首先要知道三个坐标转换矩阵&#xff0c;模型矩阵&#xff0c;观察矩阵&#xff0c;投影矩阵。 模型矩阵作用在将以物体中心为原点的坐标系统&#xff0c;转换到世界坐标。 观察矩阵作用在将世界坐标系统转换到观察坐标系统 投影矩阵作用在将观察坐标…

2024年苹果审核4.3相关问题综述

苹果审核中的4.3问题是开发者关注的焦点之一&#xff0c;本文对此进行了综述&#xff0c;总结了不同情况下的处理方式和优化策略。 第一种4.3 该类问题常见于代码或UI的重复率过高&#xff0c;苹果会直接拒绝应用。开发者需注意避免此类情况的发生&#xff0c;特别是在更新应…

亚信安全数据安全运营平台DSOP新版本发布 注入AI研判升维

在当今快速发展的数字经济时代&#xff0c;企业对于数据的依赖日益加深&#xff0c;数据安全已成为企业的生命线。亚信安全推出数据安全运营平台DSOP全新版本&#xff0c;正是为满足企业对数据安全的高度需求而设计。这款平台以其卓越的能力和技术优势&#xff0c;为企业的数据…

逆向案例二十七——某笔网登录接口非对称加密算法RSA,涉及全扣代码,浏览器断点调试,和补环境

网址&#xff1a;aHR0cHM6Ly93d3cuZmVuYmkuY29tL3BhZ2UvaG9tZQ 点击账号密码登录&#xff0c;找到登陆的包&#xff0c;发现password进行了加密。 顿时&#xff0c;老生常谈&#xff0c;开始搜索&#xff0c;找到最有嫌疑的加密代码。进行搜索&#xff0c;进入js文件后&#x…
最新文章