政安晨:【Keras机器学习示例演绎】(一)—— 利用类 U-Net 架构进行图像分割

目录

下载数据

准备输入图像的路径和目标分割掩码

一幅输入图像和相应的分割掩码是什么样子的?

准备数据集,以加载和矢量化成批数据

准备 U-Net Xception 风格模型

预留验证分割

训练模型

可视化预测


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:在宠物数据集上从头开始训练的图像分割模型。

下载数据

!!wget https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
!!wget https://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
!
!curl -O https://thor.robots.ox.ac.uk/datasets/pets/images.tar.gz
!curl -O https://thor.robots.ox.ac.uk/datasets/pets/annotations.tar.gz
!
!tar -xf images.tar.gz
!tar -xf annotations.tar.gz

演绎展示:

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  755M  100  755M    0     0  21.3M      0  0:00:35  0:00:35 --:--:-- 22.2M
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 18.2M  100 18.2M    0     0  7977k      0  0:00:02  0:00:02 --:--:-- 7974k

准备输入图像的路径和目标分割掩码

import os

input_dir = "images/"
target_dir = "annotations/trimaps/"
img_size = (160, 160)
num_classes = 3
batch_size = 32

input_img_paths = sorted(
    [
        os.path.join(input_dir, fname)
        for fname in os.listdir(input_dir)
        if fname.endswith(".jpg")
    ]
)
target_img_paths = sorted(
    [
        os.path.join(target_dir, fname)
        for fname in os.listdir(target_dir)
        if fname.endswith(".png") and not fname.startswith(".")
    ]
)

print("Number of samples:", len(input_img_paths))

for input_path, target_path in zip(input_img_paths[:10], target_img_paths[:10]):
    print(input_path, "|", target_path)

演绎展示:

Number of samples: 7390
images/Abyssinian_1.jpg | annotations/trimaps/Abyssinian_1.png
images/Abyssinian_10.jpg | annotations/trimaps/Abyssinian_10.png
images/Abyssinian_100.jpg | annotations/trimaps/Abyssinian_100.png
images/Abyssinian_101.jpg | annotations/trimaps/Abyssinian_101.png
images/Abyssinian_102.jpg | annotations/trimaps/Abyssinian_102.png
images/Abyssinian_103.jpg | annotations/trimaps/Abyssinian_103.png
images/Abyssinian_104.jpg | annotations/trimaps/Abyssinian_104.png
images/Abyssinian_105.jpg | annotations/trimaps/Abyssinian_105.png
images/Abyssinian_106.jpg | annotations/trimaps/Abyssinian_106.png
images/Abyssinian_107.jpg | annotations/trimaps/Abyssinian_107.png

一幅输入图像和相应的分割掩码是什么样子的?

from IPython.display import Image, display
from keras.utils import load_img
from PIL import ImageOps

# Display input image #7
display(Image(filename=input_img_paths[9]))

# Display auto-contrast version of corresponding target (per-pixel categories)
img = ImageOps.autocontrast(load_img(target_img_paths[9]))
display(img)

准备数据集,以加载和矢量化成批数据

import keras
import numpy as np
from tensorflow import data as tf_data
from tensorflow import image as tf_image
from tensorflow import io as tf_io


def get_dataset(
    batch_size,
    img_size,
    input_img_paths,
    target_img_paths,
    max_dataset_len=None,
):
    """Returns a TF Dataset."""

    def load_img_masks(input_img_path, target_img_path):
        input_img = tf_io.read_file(input_img_path)
        input_img = tf_io.decode_png(input_img, channels=3)
        input_img = tf_image.resize(input_img, img_size)
        input_img = tf_image.convert_image_dtype(input_img, "float32")

        target_img = tf_io.read_file(target_img_path)
        target_img = tf_io.decode_png(target_img, channels=1)
        target_img = tf_image.resize(target_img, img_size, method="nearest")
        target_img = tf_image.convert_image_dtype(target_img, "uint8")

        # Ground truth labels are 1, 2, 3. Subtract one to make them 0, 1, 2:
        target_img -= 1
        return input_img, target_img

    # For faster debugging, limit the size of data
    if max_dataset_len:
        input_img_paths = input_img_paths[:max_dataset_len]
        target_img_paths = target_img_paths[:max_dataset_len]
    dataset = tf_data.Dataset.from_tensor_slices((input_img_paths, target_img_paths))
    dataset = dataset.map(load_img_masks, num_parallel_calls=tf_data.AUTOTUNE)
    return dataset.batch(batch_size)

准备 U-Net Xception 风格模型

from keras import layers


def get_model(img_size, num_classes):
    inputs = keras.Input(shape=img_size + (3,))

    ### [First half of the network: downsampling inputs] ###

    # Entry block
    x = layers.Conv2D(32, 3, strides=2, padding="same")(inputs)
    x = layers.BatchNormalization()(x)
    x = layers.Activation("relu")(x)

    previous_block_activation = x  # Set aside residual

    # Blocks 1, 2, 3 are identical apart from the feature depth.
    for filters in [64, 128, 256]:
        x = layers.Activation("relu")(x)
        x = layers.SeparableConv2D(filters, 3, padding="same")(x)
        x = layers.BatchNormalization()(x)

        x = layers.Activation("relu")(x)
        x = layers.SeparableConv2D(filters, 3, padding="same")(x)
        x = layers.BatchNormalization()(x)

        x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

        # Project residual
        residual = layers.Conv2D(filters, 1, strides=2, padding="same")(
            previous_block_activation
        )
        x = layers.add([x, residual])  # Add back residual
        previous_block_activation = x  # Set aside next residual

    ### [Second half of the network: upsampling inputs] ###

    for filters in [256, 128, 64, 32]:
        x = layers.Activation("relu")(x)
        x = layers.Conv2DTranspose(filters, 3, padding="same")(x)
        x = layers.BatchNormalization()(x)

        x = layers.Activation("relu")(x)
        x = layers.Conv2DTranspose(filters, 3, padding="same")(x)
        x = layers.BatchNormalization()(x)

        x = layers.UpSampling2D(2)(x)

        # Project residual
        residual = layers.UpSampling2D(2)(previous_block_activation)
        residual = layers.Conv2D(filters, 1, padding="same")(residual)
        x = layers.add([x, residual])  # Add back residual
        previous_block_activation = x  # Set aside next residual

    # Add a per-pixel classification layer
    outputs = layers.Conv2D(num_classes, 3, activation="softmax", padding="same")(x)

    # Define the model
    model = keras.Model(inputs, outputs)
    return model


# Build model
model = get_model(img_size, num_classes)
model.summary()

演绎展示:

Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type)        ┃ Output Shape      ┃ Param # ┃ Connected to         ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ input_layer         │ (None, 160, 160,  │       0 │ -                    │
│ (InputLayer)        │ 3)                │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d (Conv2D)     │ (None, 80, 80,    │     896 │ input_layer[0][0]    │
│                     │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalization │ (None, 80, 80,    │     128 │ conv2d[0][0]         │
│ (BatchNormalizatio… │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation          │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (Activation)        │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_1        │ (None, 80, 80,    │       0 │ activation[0][0]     │
│ (Activation)        │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d    │ (None, 80, 80,    │   2,400 │ activation_1[0][0]   │
│ (SeparableConv2D)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     256 │ separable_conv2d[0]… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_2        │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_1  │ (None, 80, 80,    │   4,736 │ activation_2[0][0]   │
│ (SeparableConv2D)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     256 │ separable_conv2d_1[… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ max_pooling2d       │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (MaxPooling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_1 (Conv2D)   │ (None, 40, 40,    │   2,112 │ activation[0][0]     │
│                     │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add (Add)           │ (None, 40, 40,    │       0 │ max_pooling2d[0][0], │
│                     │ 64)               │         │ conv2d_1[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_3        │ (None, 40, 40,    │       0 │ add[0][0]            │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_2  │ (None, 40, 40,    │   8,896 │ activation_3[0][0]   │
│ (SeparableConv2D)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     512 │ separable_conv2d_2[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_4        │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_3  │ (None, 40, 40,    │  17,664 │ activation_4[0][0]   │
│ (SeparableConv2D)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     512 │ separable_conv2d_3[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ max_pooling2d_1     │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (MaxPooling2D)      │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_2 (Conv2D)   │ (None, 20, 20,    │   8,320 │ add[0][0]            │
│                     │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_1 (Add)         │ (None, 20, 20,    │       0 │ max_pooling2d_1[0][… │
│                     │ 128)              │         │ conv2d_2[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_5        │ (None, 20, 20,    │       0 │ add_1[0][0]          │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_4  │ (None, 20, 20,    │  34,176 │ activation_5[0][0]   │
│ (SeparableConv2D)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │   1,024 │ separable_conv2d_4[… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_6        │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ separable_conv2d_5  │ (None, 20, 20,    │  68,096 │ activation_6[0][0]   │
│ (SeparableConv2D)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │   1,024 │ separable_conv2d_5[… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ max_pooling2d_2     │ (None, 10, 10,    │       0 │ batch_normalization… │
│ (MaxPooling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_3 (Conv2D)   │ (None, 10, 10,    │  33,024 │ add_1[0][0]          │
│                     │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_2 (Add)         │ (None, 10, 10,    │       0 │ max_pooling2d_2[0][… │
│                     │ 256)              │         │ conv2d_3[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_7        │ (None, 10, 10,    │       0 │ add_2[0][0]          │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose    │ (None, 10, 10,    │ 590,080 │ activation_7[0][0]   │
│ (Conv2DTranspose)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 10, 10,    │   1,024 │ conv2d_transpose[0]… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_8        │ (None, 10, 10,    │       0 │ batch_normalization… │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_1  │ (None, 10, 10,    │ 590,080 │ activation_8[0][0]   │
│ (Conv2DTranspose)   │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 10, 10,    │   1,024 │ conv2d_transpose_1[… │
│ (BatchNormalizatio… │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_1     │ (None, 20, 20,    │       0 │ add_2[0][0]          │
│ (UpSampling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d       │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_4 (Conv2D)   │ (None, 20, 20,    │  65,792 │ up_sampling2d_1[0][… │
│                     │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_3 (Add)         │ (None, 20, 20,    │       0 │ up_sampling2d[0][0], │
│                     │ 256)              │         │ conv2d_4[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_9        │ (None, 20, 20,    │       0 │ add_3[0][0]          │
│ (Activation)        │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_2  │ (None, 20, 20,    │ 295,040 │ activation_9[0][0]   │
│ (Conv2DTranspose)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │     512 │ conv2d_transpose_2[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_10       │ (None, 20, 20,    │       0 │ batch_normalization… │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_3  │ (None, 20, 20,    │ 147,584 │ activation_10[0][0]  │
│ (Conv2DTranspose)   │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 20, 20,    │     512 │ conv2d_transpose_3[… │
│ (BatchNormalizatio… │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_3     │ (None, 40, 40,    │       0 │ add_3[0][0]          │
│ (UpSampling2D)      │ 256)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_2     │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_5 (Conv2D)   │ (None, 40, 40,    │  32,896 │ up_sampling2d_3[0][… │
│                     │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_4 (Add)         │ (None, 40, 40,    │       0 │ up_sampling2d_2[0][… │
│                     │ 128)              │         │ conv2d_5[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_11       │ (None, 40, 40,    │       0 │ add_4[0][0]          │
│ (Activation)        │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_4  │ (None, 40, 40,    │  73,792 │ activation_11[0][0]  │
│ (Conv2DTranspose)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     256 │ conv2d_transpose_4[… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_12       │ (None, 40, 40,    │       0 │ batch_normalization… │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_5  │ (None, 40, 40,    │  36,928 │ activation_12[0][0]  │
│ (Conv2DTranspose)   │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 40, 40,    │     256 │ conv2d_transpose_5[… │
│ (BatchNormalizatio… │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_5     │ (None, 80, 80,    │       0 │ add_4[0][0]          │
│ (UpSampling2D)      │ 128)              │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_4     │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_6 (Conv2D)   │ (None, 80, 80,    │   8,256 │ up_sampling2d_5[0][… │
│                     │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_5 (Add)         │ (None, 80, 80,    │       0 │ up_sampling2d_4[0][… │
│                     │ 64)               │         │ conv2d_6[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_13       │ (None, 80, 80,    │       0 │ add_5[0][0]          │
│ (Activation)        │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_6  │ (None, 80, 80,    │  18,464 │ activation_13[0][0]  │
│ (Conv2DTranspose)   │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     128 │ conv2d_transpose_6[… │
│ (BatchNormalizatio… │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ activation_14       │ (None, 80, 80,    │       0 │ batch_normalization… │
│ (Activation)        │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_transpose_7  │ (None, 80, 80,    │   9,248 │ activation_14[0][0]  │
│ (Conv2DTranspose)   │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ batch_normalizatio… │ (None, 80, 80,    │     128 │ conv2d_transpose_7[… │
│ (BatchNormalizatio… │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_7     │ (None, 160, 160,  │       0 │ add_5[0][0]          │
│ (UpSampling2D)      │ 64)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ up_sampling2d_6     │ (None, 160, 160,  │       0 │ batch_normalization… │
│ (UpSampling2D)      │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_7 (Conv2D)   │ (None, 160, 160,  │   2,080 │ up_sampling2d_7[0][… │
│                     │ 32)               │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ add_6 (Add)         │ (None, 160, 160,  │       0 │ up_sampling2d_6[0][… │
│                     │ 32)               │         │ conv2d_7[0][0]       │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ conv2d_8 (Conv2D)   │ (None, 160, 160,  │     867 │ add_6[0][0]          │
│                     │ 3)                │         │                      │
└─────────────────────┴───────────────────┴─────────┴──────────────────────┘
 Total params: 2,058,979 (7.85 MB)
 Trainable params: 2,055,203 (7.84 MB)
 Non-trainable params: 3,776 (14.75 KB)

预留验证分割

import random

# Split our img paths into a training and a validation set
val_samples = 1000
random.Random(1337).shuffle(input_img_paths)
random.Random(1337).shuffle(target_img_paths)
train_input_img_paths = input_img_paths[:-val_samples]
train_target_img_paths = target_img_paths[:-val_samples]
val_input_img_paths = input_img_paths[-val_samples:]
val_target_img_paths = target_img_paths[-val_samples:]

# Instantiate dataset for each split
# Limit input files in `max_dataset_len` for faster epoch training time.
# Remove the `max_dataset_len` arg when running with full dataset.
train_dataset = get_dataset(
    batch_size,
    img_size,
    train_input_img_paths,
    train_target_img_paths,
    max_dataset_len=1000,
)
valid_dataset = get_dataset(
    batch_size, img_size, val_input_img_paths, val_target_img_paths
)

训练模型

# Configure the model for training.
# We use the "sparse" version of categorical_crossentropy
# because our target data is integers.
model.compile(
    optimizer=keras.optimizers.Adam(1e-4), loss="sparse_categorical_crossentropy"
)

callbacks = [
    keras.callbacks.ModelCheckpoint("oxford_segmentation.keras", save_best_only=True)
]

# Train the model, doing validation at the end of each epoch.
epochs = 50
model.fit(
    train_dataset,
    epochs=epochs,
    validation_data=valid_dataset,
    callbacks=callbacks,
    verbose=2,
)

演绎展示:
 

Epoch 1/50

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700414690.172044 2226172 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.
Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 62s - 2s/step - loss: 1.6363 - val_loss: 2.2226
Epoch 2/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 94ms/step - loss: 0.9223 - val_loss: 1.8273
Epoch 3/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 82ms/step - loss: 0.7894 - val_loss: 2.0044
Epoch 4/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.7174 - val_loss: 2.3480
Epoch 5/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 82ms/step - loss: 0.6695 - val_loss: 2.7528
Epoch 6/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.6325 - val_loss: 3.1453
Epoch 7/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 84ms/step - loss: 0.6012 - val_loss: 3.5611
Epoch 8/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.5730 - val_loss: 4.0003
Epoch 9/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 85ms/step - loss: 0.5466 - val_loss: 4.4798
Epoch 10/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 86ms/step - loss: 0.5210 - val_loss: 5.0245
Epoch 11/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.4958 - val_loss: 5.5950
Epoch 12/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.4706 - val_loss: 6.1534
Epoch 13/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 85ms/step - loss: 0.4453 - val_loss: 6.6107
Epoch 14/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.4202 - val_loss: 6.8010
Epoch 15/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 84ms/step - loss: 0.3956 - val_loss: 6.6751
Epoch 16/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.3721 - val_loss: 6.0800
Epoch 17/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 84ms/step - loss: 0.3506 - val_loss: 5.1820
Epoch 18/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 82ms/step - loss: 0.3329 - val_loss: 4.0350
Epoch 19/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 4s - 114ms/step - loss: 0.3216 - val_loss: 3.0513
Epoch 20/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 94ms/step - loss: 0.3595 - val_loss: 2.2567
Epoch 21/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 100ms/step - loss: 0.4417 - val_loss: 1.5873
Epoch 22/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 101ms/step - loss: 0.3531 - val_loss: 1.5798
Epoch 23/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 96ms/step - loss: 0.3353 - val_loss: 1.5525
Epoch 24/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 95ms/step - loss: 0.3392 - val_loss: 1.4625
Epoch 25/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 95ms/step - loss: 0.3596 - val_loss: 0.8867
Epoch 26/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 94ms/step - loss: 0.3528 - val_loss: 0.8021
Epoch 27/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 92ms/step - loss: 0.3237 - val_loss: 0.7986
Epoch 28/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 89ms/step - loss: 0.3198 - val_loss: 0.8533
Epoch 29/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 84ms/step - loss: 0.3272 - val_loss: 1.0588
Epoch 30/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 88ms/step - loss: 0.3164 - val_loss: 1.1889
Epoch 31/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 85ms/step - loss: 0.2987 - val_loss: 0.9518
Epoch 32/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.2749 - val_loss: 0.9011
Epoch 33/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 84ms/step - loss: 0.2595 - val_loss: 0.8872
Epoch 34/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.2552 - val_loss: 1.0221
Epoch 35/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 82ms/step - loss: 0.2628 - val_loss: 1.1553
Epoch 36/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 85ms/step - loss: 0.2788 - val_loss: 2.1549
Epoch 37/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 94ms/step - loss: 0.2870 - val_loss: 1.6282
Epoch 38/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 89ms/step - loss: 0.2702 - val_loss: 1.3201
Epoch 39/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 91ms/step - loss: 0.2569 - val_loss: 1.2364
Epoch 40/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 106ms/step - loss: 0.2523 - val_loss: 1.3673
Epoch 41/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 86ms/step - loss: 0.2570 - val_loss: 1.3999
Epoch 42/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.2680 - val_loss: 0.9976
Epoch 43/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.2558 - val_loss: 1.0209
Epoch 44/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 85ms/step - loss: 0.2403 - val_loss: 1.3271
Epoch 45/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.2414 - val_loss: 1.1993
Epoch 46/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 84ms/step - loss: 0.2516 - val_loss: 1.0532
Epoch 47/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.2695 - val_loss: 1.1183
Epoch 48/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 87ms/step - loss: 0.2555 - val_loss: 1.0432
Epoch 49/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 82ms/step - loss: 0.2290 - val_loss: 0.9444
Epoch 50/50

Corrupt JPEG data: 240 extraneous bytes before marker 0xd9

32/32 - 3s - 83ms/step - loss: 0.1994 - val_loss: 1.2182

<keras.src.callbacks.history.History at 0x7fe01842dab0>

可视化预测

# Generate predictions for all images in the validation set

val_dataset = get_dataset(
    batch_size, img_size, val_input_img_paths, val_target_img_paths
)
val_preds = model.predict(val_dataset)


def display_mask(i):
    """Quick utility to display a model's prediction."""
    mask = np.argmax(val_preds[i], axis=-1)
    mask = np.expand_dims(mask, axis=-1)
    img = ImageOps.autocontrast(keras.utils.array_to_img(mask))
    display(img)


# Display results for validation image #10
i = 10

# Display input image
display(Image(filename=val_input_img_paths[i]))

# Display ground-truth target mask
img = ImageOps.autocontrast(load_img(val_target_img_paths[i]))
display(img)

# Display mask predicted by our model
display_mask(i)  # Note that the model only sees inputs at 150x150.

演绎展示:
 

 32/32 ━━━━━━━━━━━━━━━━━━━━ 5s 100ms/step


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/556069.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

4.18学习总结

多线程补充 等待唤醒机制 现在有两条线程在运行&#xff0c;其中一条线程可以创造一个特殊的数据供另一条线程使用&#xff0c;但这个数据的创建也有要求&#xff1a;在同一时间只允许有一个这样的特殊数据&#xff0c;那么我们要怎样去完成呢&#xff1f;如果用普通的多线程…

FTP客户端Transmit 5 for Mac中文激活版

Transmit 5是一款功能强大的Mac FTP客户端软件&#xff0c;它由Panic公司开发&#xff0c;为用户提供简单、高效的文件传输体验。 Transmit 5 for Mac中文激活版下载 Transmit 5支持多种传输协议&#xff0c;如FTP、SFTP、WebDAV和Amazon S3等&#xff0c;满足用户不同的文件传…

eCongnition 获取特征(shp)

目录 1、加载数据和分割的shp文件 2、将专题(导入的shp)转换为对象 3、导出特征 1、加载数据和分割的shp文件 我们加载数据&#xff0c;在第二个框&#xff08;Thematic La..&#xff09;里加载矢量shp 导入的.shp文件称为专题层(Thematic Layer), 显示方式如下所示&#x…

深入探索:Facebook如何重塑社交互动

在当代社会中&#xff0c;社交互动已成为日常生活的核心组成部分。而在众多的社交媒体平台中&#xff0c;Facebook凭借其卓越的用户基础和创新的功能&#xff0c;已经成为了全球最大的社交媒体平台。本文将深入探讨Facebook如何通过其独特的特性和功能&#xff0c;重塑了人们的…

Python 字符串 Base64

因消息传输的需要&#xff0c;我们需要对大量文本的字符串进行一下 Base64 转换。 这样的好处是因为在传输的字符串中可能有存在一些特殊字符&#xff0c;这些特殊在经过网络传输的时候会出现编码的问题&#xff0c;并且会影响传输稳定性。 使用 Base64 可以避免这个问题。 方…

数据库--Sqlite3

1、思维导图 2sqlite3在linux中是实现数据的增删&#xff0c;改 #include<myhead.h> int main(int argc, const char *argv[]) { //1、定义一个数据库句柄指针 sqlite3* ppDb NULL; //2、创建或打开数据库 if(sqlite3_open("./mydb…

深入解析Apache Hadoop YARN:工作原理与核心组件

什么是YARN&#xff1f; YARN&#xff08;Yet Another Resource Negotiator&#xff09;是Apache Hadoop生态系统中的一个重要组件&#xff0c;用于资源管理和作业调度。它是Hadoop 2.x版本中的一个关键特性&#xff0c;取代了旧版本中的JobTracker和TaskTracker。YARN的设计目…

ElasticSearch实战之项目搜索高亮

文章目录 1. 前情配置2、数据操作2.1 操作API2.2 数据入库 3. 高亮搜索3.1 方法封装3.2 高亮搜索 1. 前情配置 为满足ElasticSearch可在项目中实现搜索高亮&#xff0c;我们需要先做一些前情配置 导入ElasticSearch依赖 <dependency><groupId>org.springframewor…

【Flutter】多语言方案一:flutter_localizations 与 GetX 配合版

系列文章目录 多语言方案&#xff1a;flutter_localizations 与 GetX 配合版&#xff0c;好处&#xff1a;命令行生成多语言字符串的引用常量类&#xff0c;缺点&#xff1a;切换语言以后&#xff0c;主界面需要手动触发setState&#xff0c;重绘将最新的Locale数据设置给GetM…

【Leetcode每日一题】 分治 - 排序数组(难度⭐⭐)(60)

1. 题目解析 题目链接&#xff1a;912. 排序数组 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 算法思路&#xff1a; 快速排序作为一种经典的排序算法&#xff0c;其核心思想在于通过“分而治之”的策略&#xff…

Idea修改【Help->Edit Custom VM Options...】后,导致idea无法正常启动的解决方法

一、错误场景: 二、解决方法&#xff1a; 修改文件路径&#xff1a;C:\Users\tianjm&#xff08;写自己的用户名&#xff09;\AppData\Roaming\JetBrains\IdeaIC2024.1&#xff08;选自己安装的版本&#xff09;

Linux 网络编程项目--简易ftp

主要代码 config.h #define LS 0 #define GET 1 #define PWD 2#define IFGO 3#define LCD 4 #define LLS 5 #define CD 6 #define PUT 7#define QUIT 8 #define DOFILE 9struct Msg {int type;char data[1024];char secondBuf[128]; }; 服务器: #i…

传统零售行业如何做数字化转型?

传统零售行业的数字化转型是一个系统性的过程&#xff0c;涉及到企业的多个方面。以下是一些关键步骤和策略&#xff0c;帮助传统零售企业实现数字化转型&#xff1a; 1、明确转型目标和战略 首先&#xff0c;企业需要明确数字化转型的目标和战略。包括确定企业的核心竞争力、…

Java内存模型和 JVM 内存运行时

文章目录 前言一、什么是Java 的内存模型&#xff1f;二、什么是 JVM 的运行时数据区Java8 之前和之后的区别JVM 内存模型JVM 内存区域JVM 内存垃圾回收JVM如何判断哪些对象不在存活&#xff1f;JVM运行过程中如何判断哪些对象是垃圾&#xff1f; JVM 垃圾回收Java8 中的 jvm如…

.rmallox勒索病毒来袭:如何守护您的数据安全?

引言&#xff1a; 随着信息技术的飞速发展&#xff0c;网络安全问题日益凸显&#xff0c;其中勒索病毒更是成为了网络安全领域的一大难题。.rmallox勒索病毒作为一种典型的恶意软件&#xff0c;通过加密受害者文件并勒索赎金的方式&#xff0c;给企业和个人带来了巨大的经济损…

指纹浏览器如何高效帮助TikTok账号矩阵搭建?

TikTok的账号矩阵&#xff0c;可能听起来还比较陌生&#xff0c;但随着TikTok业务已经成为吃手可热的跨境业务&#xff0c;TikTok多账号矩阵已成为流行策略。但它有什么优点呢&#xff1f;操作多个帐户会导致被禁止吗&#xff1f;如何有效地建立账户矩阵开展业务&#xff1f;这…

爬虫 | 基于 requests 实现加密 POST 请求发送与身份验证

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本项目旨在实现一个简单的 Python 脚本&#xff0c;用于向指定的 URL 发送 POST 请求&#xff0c;并通过特定的加密算法生成请求头中的签名信息。这个脚本的背后是与某个特定的网络服务交互&#xff0c;发送特定格式的 JSON 数据…

深入理解MySQL中的UPDATE JOIN语句

在MySQL数据库中&#xff0c;UPDATE语句用于修改表中现有的记录。有时&#xff0c;我们需要根据另一个相关联表中的条件来更新表中的数据。这时就需要使用UPDATE JOIN语句。最近我们遇到了这样的需求&#xff1a;我们有一张历史记录表&#xff0c;其中一个字段记录了用,连接的多…

网络爬虫软件学习

1 什么是爬虫软件 爬虫软件&#xff0c;也称为网络爬虫或网络蜘蛛&#xff0c;是一种自动抓取万维网信息的程序或脚本。它基于一定的规则&#xff0c;自动地访问网页并抓取需要的信息。爬虫软件可以应用于大规模数据采集和分析&#xff0c;广泛应用于舆情监测、品牌竞争分析、…

在 Linux 终端中创建目录

目录 ⛳️推荐 前言 在 Linux 中创建一个新目录 创建多个新目录 创建多个嵌套的子目录 测试你的知识 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 前言 在本系列的这一部…
最新文章