STM32利用硬件I2C读取MPU6050陀螺仪数据

有了前面的基本配置,这节读取MPU6050的数据还算是简单,主要就是初始化时给MPU6050一些配置,取消睡眠模式,MPU6050开机是默认睡眠模式的,读写无效,所以上来就要先更改配置:

MPU6050寄存器初始化,需要对照MPU6050手册的寄存器描述配置,此处仅配置了部分重要的寄存器:

电源管理寄存器1,取消睡眠模式,选择时钟源为X轴陀螺仪

电源管理寄存器2,保持默认值0,所有轴均不待机

采样率分频寄存器,配置采样率

配置寄存器,配置DLPF

陀螺仪配置寄存器,选择满量程为±2000°/s

加速度计配置寄存器,选择满量程为±16g

配置完MPU6050的各个功能寄存器,剩下的就是读取陀螺仪的数据了。

 函    数:MPU6050获取数据
 参    数:AccX AccY AccZ 加速度计X、Y、Z轴的数据,使用输出参数的形式返回,范     围:-32768~32767

参    数:GyroX GyroY GyroZ 陀螺仪X、Y、Z轴的数据,使用输出参数的形式返回,范           围:-32768~32767

读取加速度计X轴的高8位数据

读取加速度计X轴的低8位数据

数据拼接,通过输出参数返回

MUP6050.c文件:

#include "stm32f10x.h"                  // Device header
#include "MPU6050_Reg.h"

#define MPU6050_ADDRESS		0xD0		//MPU6050的I2C从机地址

/**
  * 函    数:MPU6050等待事件
  * 参    数:同I2C_CheckEvent
  * 返 回 值:无
  */
void MPU6050_WaitEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT)
{
	uint32_t Timeout;
	Timeout = 10000;									//给定超时计数时间
	while (I2C_CheckEvent(I2Cx, I2C_EVENT) != SUCCESS)	//循环等待指定事件
	{
		Timeout --;										//等待时,计数值自减
		if (Timeout == 0)								//自减到0后,等待超时
		{
			/*超时的错误处理代码,可以添加到此处*/
			break;										//跳出等待,不等了
		}
	}
}

/**
  * 函    数:MPU6050写寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 参    数:Data 要写入寄存器的数据,范围:0x00~0xFF
  * 返 回 值:无
  */
void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data)
{
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Transmitter);	//硬件I2C发送从机地址,方向为发送
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED);	//等待EV6
	
	I2C_SendData(I2C2, RegAddress);											//硬件I2C发送寄存器地址
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTING);			//等待EV8
	
	I2C_SendData(I2C2, Data);												//硬件I2C发送数据
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTED);				//等待EV8_2
	
	I2C_GenerateSTOP(I2C2, ENABLE);											//硬件I2C生成终止条件
}

/**
  * 函    数:MPU6050读寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 返 回 值:读取寄存器的数据,范围:0x00~0xFF
  */
uint8_t MPU6050_ReadReg(uint8_t RegAddress)
{
	uint8_t Data;
	
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Transmitter);	//硬件I2C发送从机地址,方向为发送
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED);	//等待EV6
	
	I2C_SendData(I2C2, RegAddress);											//硬件I2C发送寄存器地址
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTED);				//等待EV8_2
	
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成重复起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Receiver);		//硬件I2C发送从机地址,方向为接收
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED);		//等待EV6
	
	I2C_AcknowledgeConfig(I2C2, DISABLE);									//在接收最后一个字节之前提前将应答失能
	I2C_GenerateSTOP(I2C2, ENABLE);											//在接收最后一个字节之前提前申请停止条件
	
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_RECEIVED);				//等待EV7
	Data = I2C_ReceiveData(I2C2);											//接收数据寄存器
	
	I2C_AcknowledgeConfig(I2C2, ENABLE);									//将应答恢复为使能,为了不影响后续可能产生的读取多字节操作
	
	return Data;
}

/**
  * 函    数:MPU6050初始化
  * 参    数:无
  * 返 回 值:无
  */
void MPU6050_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);		//开启I2C2的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);					//将PB10和PB11引脚初始化为复用开漏输出
	
	/*I2C初始化*/
	I2C_InitTypeDef I2C_InitStructure;						//定义结构体变量
	I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;				//模式,选择为I2C模式
	I2C_InitStructure.I2C_ClockSpeed = 50000;				//时钟速度,选择为50KHz
	I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;		//时钟占空比,选择Tlow/Thigh = 2
	I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;				//应答,选择使能
	I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;	//应答地址,选择7位,从机模式下才有效
	I2C_InitStructure.I2C_OwnAddress1 = 0x00;				//自身地址,从机模式下才有效
	I2C_Init(I2C2, &I2C_InitStructure);						//将结构体变量交给I2C_Init,配置I2C2
	
	/*I2C使能*/
	I2C_Cmd(I2C2, ENABLE);									//使能I2C2,开始运行
	
	/*MPU6050寄存器初始化,需要对照MPU6050手册的寄存器描述配置,此处仅配置了部分重要的寄存器*/
	MPU6050_WriteReg(MPU6050_PWR_MGMT_1, 0x01);				//电源管理寄存器1,取消睡眠模式,选择时钟源为X轴陀螺仪
	MPU6050_WriteReg(MPU6050_PWR_MGMT_2, 0x00);				//电源管理寄存器2,保持默认值0,所有轴均不待机
	MPU6050_WriteReg(MPU6050_SMPLRT_DIV, 0x09);				//采样率分频寄存器,配置采样率
	MPU6050_WriteReg(MPU6050_CONFIG, 0x06);					//配置寄存器,配置DLPF
	MPU6050_WriteReg(MPU6050_GYRO_CONFIG, 0x18);			//陀螺仪配置寄存器,选择满量程为±2000°/s
	MPU6050_WriteReg(MPU6050_ACCEL_CONFIG, 0x18);			//加速度计配置寄存器,选择满量程为±16g
}


/**
  * 函    数:MPU6050获取ID号
  * 参    数:无
  * 返 回 值:MPU6050的ID号
  */
uint8_t MPU6050_GetID(void)
{
	return MPU6050_ReadReg(MPU6050_WHO_AM_I);		//返回WHO_AM_I寄存器的值
}

/**
  * 函    数:MPU6050获取数据
  * 参    数:AccX AccY AccZ 加速度计X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 参    数:GyroX GyroY GyroZ 陀螺仪X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 返 回 值:无
  */
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ, int16_t *Temp)
{
	uint8_t DataH, DataL;								//定义数据高8位和低8位的变量
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_H);		//读取加速度计X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_L);		//读取加速度计X轴的低8位数据
	*AccX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_H);		//读取加速度计Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_L);		//读取加速度计Y轴的低8位数据
	*AccY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_H);		//读取加速度计Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_L);		//读取加速度计Z轴的低8位数据
	*AccZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_XOUT_H);		//读取陀螺仪X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_XOUT_L);		//读取陀螺仪X轴的低8位数据
	*GyroX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_YOUT_H);		//读取陀螺仪Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_YOUT_L);		//读取陀螺仪Y轴的低8位数据
	*GyroY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_H);		//读取陀螺仪Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_L);		//读取陀螺仪Z轴的低8位数据
	*GyroZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_TEMP_OUT_H);		//读取温度传感器的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_TEMP_OUT_L);		//读取温度传感器的低8位数据
	*Temp = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
}

MPU6050.h文件:

#ifndef __MPU6050_H
#define __MPU6050_H

void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data);
uint8_t MPU6050_ReadReg(uint8_t RegAddress);

void MPU6050_Init(void);
uint8_t MPU6050_GetID(void);
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ, int16_t *Temp);

#endif

MPU6050_Reg.h文件:

#ifndef __MPU6050_REG_H
#define __MPU6050_REG_H

#define	MPU6050_SMPLRT_DIV		0x19
#define	MPU6050_CONFIG			0x1A
#define	MPU6050_GYRO_CONFIG		0x1B
#define	MPU6050_ACCEL_CONFIG	0x1C

#define	MPU6050_ACCEL_XOUT_H	0x3B
#define	MPU6050_ACCEL_XOUT_L	0x3C
#define	MPU6050_ACCEL_YOUT_H	0x3D
#define	MPU6050_ACCEL_YOUT_L	0x3E
#define	MPU6050_ACCEL_ZOUT_H	0x3F
#define	MPU6050_ACCEL_ZOUT_L	0x40
#define	MPU6050_TEMP_OUT_H		0x41
#define	MPU6050_TEMP_OUT_L		0x42
#define	MPU6050_GYRO_XOUT_H		0x43
#define	MPU6050_GYRO_XOUT_L		0x44
#define	MPU6050_GYRO_YOUT_H		0x45
#define	MPU6050_GYRO_YOUT_L		0x46
#define	MPU6050_GYRO_ZOUT_H		0x47
#define	MPU6050_GYRO_ZOUT_L		0x48

#define	MPU6050_PWR_MGMT_1		0x6B
#define	MPU6050_PWR_MGMT_2		0x6C
#define	MPU6050_WHO_AM_I		0x75

#endif

main.c文件:

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MPU6050.h"

uint8_t ID;								//定义用于存放ID号的变量
int16_t AX, AY, AZ, GX, GY, GZ, TM;			//定义用于存放各个数据的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	MPU6050_Init();		//MPU6050初始化
	
	/*显示ID号*/
	OLED_ShowString(1, 1, "ID:");		//显示静态字符串
	ID = MPU6050_GetID();				//获取MPU6050的ID号
	OLED_ShowHexNum(1, 4, ID, 2);		//OLED显示ID号
	
	while (1)
	{
		MPU6050_GetData(&AX, &AY, &AZ, &GX, &GY, &GZ, &TM);		//获取MPU6050的数据
		OLED_ShowNum(1,8, (TM/340 + 36.5), 2);                //显示温度
		
		OLED_ShowSignedNum(2, 1, AX, 5);					//OLED显示数据
		OLED_ShowSignedNum(3, 1, AY, 5);
		OLED_ShowSignedNum(4, 1, AZ, 5);
		OLED_ShowSignedNum(2, 8, GX, 5);
		OLED_ShowSignedNum(3, 8, GY, 5);
		OLED_ShowSignedNum(4, 8, GZ, 5);
	}
}

以上文件通过编译后下载到芯片中就能得到如下图的结果了:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/586187.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mongodb卸载(win)

关闭服务 &#xff08;或者cmd卸载服务&#xff1a;&#xff09; net stop 服务名称卸载应用 至此&#xff0c;卸载完成&#xff01;

微隔离实施五步法,让安全防护转起来

前言 零信任的最核心原则→最小权限 安全的第一性原理→预防 零信任的最佳实践→微隔离 “零信任”这个术语的正式出现&#xff0c;公认是在2010年由Forrester分析师John Kindervag最早提出。时至今日&#xff0c;“零信任”俨然已成安全领域最热门的词汇&#xff0c;做安全…

实验报告5-Spring MVC实现页面

实验报告5-SpringMVC实现页面 一、需求分析 使用Spring MVC框架&#xff0c;从视图、控制器和模型三方面实验动态页面。模拟实现用户登录&#xff0c;模拟的用户名密码以模型属性方式存放在Spring容器中&#xff0c;控制器相应用户请求并映射参数&#xff0c;页面收集用户数据或…

设计模式-01 设计模式单例模式

设计模式-01 设计模式单例模式 目录 设计模式-01 设计模式单例模式 1定义 2.内涵 3.使用示例 4.具体代码使用实践 5.注意事项 6.最佳实践 7.总结 1 定义 单例模式是一种设计模式&#xff0c;它确保一个类只能被实例化一次。它通过在类内部创建类的唯一实例并提供一个全…

uniapp + uView动态表单校验

项目需求&#xff1a;动态循环表单&#xff0c;并实现动态表单校验 页面&#xff1a; <u--form label-position"top" :model"tmForm" ref"tmForm" label-width"0px" :rulesrules><div v-for"(element, index) in tmForm…

(详细整理!!!!)Tensorflow与Keras、Python版本对应关系!!!

小伙伴们大家好&#xff0c;不知道大家有没有被tensorflow框架困扰过 今天我就给大家整理一下tensorflow和keras、python版本的对应关系 大家这些都可以在官网找到&#xff0c;下面我把官网的连接给大家放在这里&#xff1a;在 Windows 环境中从源代码构建 | TensorFlow (g…

搭建大型分布式服务(三十七)SpringBoot 整合多个kafka数据源-取消限定符

系列文章目录 文章目录 系列文章目录前言一、本文要点二、开发环境三、原项目四、修改项目五、测试一下五、小结 前言 本插件稳定运行上百个kafka项目&#xff0c;每天处理上亿级的数据的精简小插件&#xff0c;快速上手。 <dependency><groupId>io.github.vipjo…

基于 React 的图形验证码插件

react-captcha-code NPM 地址 &#xff1a; react-captcha-code - npm npm install react-captcha-code --save 如下我自己的封装&#xff1a; import Captcha from "react-captcha-code";type CaptchaType {captchaChange: (captchaInfo: string) > void;code…

前端发起网络请求的几种常见方式(XMLHttpRequest、FetchApi、jQueryAjax、Axios)

摘要 前端发起网络请求的几种常见方式包括&#xff1a; XMLHttpRequest (XHR)&#xff1a; 这是最传统和最常见的方式之一。它允许客户端与服务器进行异步通信。XHR API 提供了一个在后台发送 HTTP 请求和接收响应的机制&#xff0c;使得页面能够在不刷新的情况下更新部分内容…

Flutter笔记:Widgets Easier组件库(2)阴影盒子

Flutter笔记 Widgets Easier组件库&#xff08;2&#xff09;&#xff1a;阴影盒子 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress o…

Python中的动态数据可视化Bokeh库实战

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python 中的动态数据可视化Bokeh库实战 在数据科学和可视化领域&#xff0c;动态数据可视化…

windows下安装onlyoffice

文章目录 1、 安装ErLang2、 安装rabbitmq3、 安装postgresql4、 安装onlyoffice(社区版) 1、 安装ErLang 下载地址&#xff1a;https://erlang.org/download/otp_win64_24.2.exe opt_wind64_24.2.exe 直接运行&#xff0c;一步一步安装 2、 安装rabbitmq 下载地址&#xf…

【笔记】Simulink与Workbench交互+自定义m函数封装为Simulink模块

以如下三角函数为例&#xff0c;说明建模方法 ya*sin(b*2*pi*uc);0.总模型总代码 总模型 总代码&#xff1a; clc clear close allt_all10; a10; b1; c0;%pi/2; delta_t0.01; simOutsim(test240430); out_tsimOut.tout; out_y1simOut.yout{1}.Values; out_y2simOut.yout{2}.…

C++-10

1.C一个程序&#xff0c;实现两个类&#xff0c;分别存放输入的字符串中的数字和字母&#xff0c;并按各自的顺序排列&#xff0c; 类中实现-一个dump函数&#xff0c;调C用后输出类中当前存放的字符串结果。 例如&#xff0c;输入1u4y2a3d,输出:存放字母的类&#xff0c;输出a…

机器人正反向运动学(FK和IK)

绕第一个顶点可以沿Z轴转动&#xff0c;角度用alpha表示 绕第二个点沿X轴转动&#xff0c;角度为Beta 第三个点沿X轴转动&#xff0c;记作gama 这三个点构成姿态&#xff08;pose&#xff09; 我们记第一个点为P0&#xff0c;画出它的本地坐标系&#xff0c;和世界坐标系一样红…

无人机+三维建模:倾斜摄影技术详解

无人机倾斜摄影测量技术是一项高新技术&#xff0c;近年来在国际摄影测量领域得到了快速发展。这种技术通过从一个垂直和四个倾斜的五个不同视角同步采集影像&#xff0c;从而获取到丰富的建筑物顶面及侧视的高分辨率纹理。这种技术不仅能够真实地反映地物情况&#xff0c;还能…

设计模式 --6组合模式

文章目录 组合模式应用场景组合模式概念组合模式结构图透明方式和安全方式什么时候使用组合模式公司管理系统使用 组合模式来构架组合模式的好处 组合模式应用场景 整体和部分可以被一致性对待 比如人力资源部 财务部的管理功能可以复用于分公司的功能 可以引入一种 树状的结构…

【webrtc】MessageHandler 2: 基于线程的消息处理:以PeerConnectionClient为例

PeerConnectionClient 前一篇 nullaudiopoller 并么有场景线程,而是就是在当前线程直接执行的, PeerConnectionClient 作为一个独立的客户端,默认的是主线程。 PeerConnectionClient 同时维护客户端的信令状态,并且通过OnMessage实现MessageHandler 消息处理。 目前只处理一…

AI大模型日报#0430:疑似GPT4.5模型刷屏、上交实现「蛋白质功能定向进化」、微软紧急撤回WizardLM-2

导读&#xff1a; 欢迎阅读《AI大模型日报》&#xff0c;内容基于Python爬虫和LLM自动生成。目前采用“文心一言”生成了今日要点以及每条资讯的摘要。 《AI大模型日报》今日要点&#xff1a; 在AI大模型领域&#xff0c;多项研究进展和行业应用动态引发关注。一夜之间&#x…

Gateway Predicate断言(谓词)

是什么 Spring Cloud Gateway匹配路由作为Spring WebFlux HandlerMapping基础设施的一部分。 Spring Cloud Gateway包含许多内置的路由谓词工厂。 所有这些谓词都匹配HTTP请求的不同属性。 您可以使用逻辑 and 语句来联合收割机组合多个路由谓词工厂。 Predicate就是为了实现一…