事件处理模式--reactor原理与实现

文章目录

      • reactor
      • api
      • code

reactor

reactor是是服务器的重要模型, 是一种事件驱动的反应堆模式
通过epoll_create() 创建句柄, epoll_ctrl()提前注册好不同的事件处理函数 , 当事件到来就由 epoll_wait () 获取同时到来的多个事件,并且根据数据的不同类型将事件分发给事件处理机制 (事件处理器),通过回调函数方式实现响应的功能(如创建客户端fd, 读/写IO)

优点:

  1. 响应快,不必为单个同步时间所阻塞,虽然 Reactor 本身依然是同步的;
  2. 编程相对简单,可以最大程度的避免复杂的多线程及同步问题,并且避免了多线程/ 进程的切换开销
  3. 可扩展性,可以方便的通过增加 Reactor 实例个数来充分利用 CPU 资源
  4. 可复用性,reactor 框架本身与具体事件处理逻辑无关,具有很高的复用性

流程:

  1. 注册事件 和 对应的事件处理器
  2. 多路复用器等待事件到来
  3. 事件到来,激发事件分发器分发事件到对应的处理器
  4. 事件处理器处理事件,然后注册新的事件 (如fu武器接收buffer 后 发送buffer)

api

  • epol_create: 创建fd
int epoll_create(int size);

创建一个epoll的句柄,size通常为1,当创建好epoll句柄后,它就是会占用一个fd

  • epoll_ctrl: epoll的事件注册函数
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

epoll_ctl向 epoll对象中添加、修改或者删除感兴趣的事件,返回0表示成功,否则返回–1,此时需要根据errno错误码判断错误类型
epfd : epoll_create()的返回值
op : 表示动作
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;

fd : 需要监听的fd

*event : 告诉内核需要监听什么事

struct epoll_event结构:

typedef union epoll_data {
    void *ptr;
    int fd;
    __uint32_t u32;
    __uint64_t u64;
} epoll_data_t;
 
struct epoll_event {
    __uint32_t events; /* Epoll events */
    epoll_data_t data; /* User data variable */
};
  • epoll_wait: 等待事件产生,类似与select调用
 int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

epfd: epoll的描述符
*event : events则是分配好的 epoll_event结构体数组,epoll将会把发生的事件复制到 events数组中
maxevnets : 表示本次可以返回的最大事件数目,通常 maxevents参数与预分配的events数组的大小是相等的。
timeout : 表示在没有检测到事件发生时最多等待的时间(单位为毫秒),如果 timeout为0,则表示 epoll_wait在 rdllist链表中为空,立刻返回,不会等待

code

reactor 封装

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <errno.h>
#include <fcntl.h>
 
typedef struct sockaddr SA;
 
#define BUFFSIZE 1024
 
struct sockitem {
	int sockfd;
	//事件处理器,处理函数回调接口
	int (*callback)(int fd, int events, void* arg);
 
	//读写函数
	char recvbuffer[BUFFSIZE];
	char sendbuffer[BUFFSIZE];
	//读写字节数
	int rlen;
	int slen;
};
 
struct reactor {
	int epfd;
	struct epoll_event events[512];
};
 
//定义全局的eventloop --> 事件循环
struct reactor* eventloop = NULL;
 
//申明这些事件处理器函数
int recv_cb(int fd, int events, void *arg);
int accept_cb(int fd, int events, void* arg);
int send_cb(int fd, int evnts, void* arg);
 
 
int recv_cb(int fd, int events, void *arg) {
	struct sockitem* si = (struct sockitem*)arg;
	struct epoll_event ev;//后面需要 
 
	//处理IO读事件
	int ret = recv(fd, si->recvbuffer, BUFFSIZE, 0);
	if (ret < 0) {
		if (errno == EAGAIN || errno == EWOULDBLOCK) { //
			return -1;
		} else {
			
		}
		//出错了,从监视IO事件红黑树中移除结点,避免僵尸结点
		ev.events = EPOLLIN;
		epoll_ctl(eventloop->epfd, EPOLL_CTL_DEL, fd, &ev);
		close(fd);
		free(si);		
	} else if (ret == 0) {
		//对端断开连接
		printf("fd %d disconnect\n", fd);
 
		ev.events = EPOLLIN;
		epoll_ctl(eventloop->epfd, EPOLL_CTL_DEL, fd, &ev);
		//close同一断开连接,避免客户端大量的close_wait状态
		close(fd);
		free(si);	
 
	} else {
		//打印接收到的数据
		printf("recv: %s, %d Bytes\n", si->recvbuffer, ret);
		//设置sendbuffer
		si->rlen = ret;
		memcpy(si->sendbuffer, si->recvbuffer, si->rlen);
		si->slen = si->rlen;
		//注册写事件处理器
		struct epoll_event ev;
		ev.events = EPOLLOUT | EPOLLET;
	
		si->sockfd = fd;
		si->callback = send_cb;
		ev.data.ptr = si;
 
		epoll_ctl(eventloop->epfd, EPOLL_CTL_MOD, fd, &ev);
	}
 
}
int accept_cb(int fd, int events, void* arg) {
	//处理新的连接。 连接IO事件处理流程
	struct sockaddr_in cli_addr;
	memset(&cli_addr, 0, sizeof(cli_addr));
	socklen_t cli_len = sizeof(cli_addr);
 
	int cli_fd = accept(fd, (SA*)&cli_addr, &cli_len);
	if (cli_fd <= 0) return -1;
 
	char cli_ip[INET_ADDRSTRLEN] = {0};	//存储cli_ip
 
	printf("Recv from ip %s at port %d\n", inet_ntop(AF_INET, &cli_addr.sin_addr, cli_ip, sizeof(cli_ip)),
		ntohs(cli_addr.sin_port));
	//注册接下来的读事件处理器
	struct epoll_event ev;
	ev.events = EPOLLIN | EPOLLET;
	struct sockitem* si = (struct sockitem*)malloc(sizeof(struct sockitem));
	si->sockfd = cli_fd;
	si->callback = recv_cb;//设置事件处理器
 
	ev.data.ptr = si;
	epoll_ctl(eventloop->epfd, EPOLL_CTL_ADD, cli_fd, &ev);
 
	return cli_fd;
 
}
int send_cb(int fd, int events, void* arg) {
	//处理send IO事件
	struct sockitem *si = (struct sockitem*)arg;
	send(fd, si->sendbuffer, si->slen, 0); 
 
	//再次注册IO读事件处理器
	struct epoll_event ev;
	ev.events = EPOLLIN | EPOLLET;
 
	si->sockfd = fd;
	si->callback = recv_cb;//设置事件处理器
	ev.data.ptr = si;
 
	epoll_ctl(eventloop->epfd, EPOLL_CTL_MOD, fd, &ev);
 
}
 
int main(int argc, char* argv[]) {
	if (argc != 2) {
		fprintf(stderr, "uasge: %s <port>", argv[0]);
		return 1;
	}
 
	int sockfd = socket(AF_INET, SOCK_STREAM, 0);
	struct sockaddr_in serv_addr;
	int port = atoi(argv[1]);
 
	//确定服务端协议地址簇
	memset(&serv_addr, 0, sizeof(serv_addr));
	serv_addr.sin_family = AF_INET;
	serv_addr.sin_addr.s_addr = INADDR_ANY;
	serv_addr.sin_port = htons(port);
 
	//进行绑定
	if (-1 == bind(sockfd, (SA*)&serv_addr, sizeof(serv_addr))) {
		fprintf(stderr, "bind error");
		return 2;
	}
 
	if (-1 == listen(sockfd, 5)) {
		fprintf(stderr, "listen error");
		return 3;
	}
 
	//init eventloop
	eventloop = (struct reactor*)malloc(sizeof(struct reactor));
	//创建epoll句柄.
	eventloop->epfd = epoll_create(1);
	//注册建立连接IO事件处理函数
	struct epoll_event ev;
	ev.events = EPOLLIN;
	struct sockitem* si = (struct sockitem*)malloc(sizeof(struct sockitem));
	si->sockfd = sockfd;
	si->callback = accept_cb;//设置事件处理器
 
	ev.data.ptr = si;
	//将监视事件加入到reactor的epfd中
	epoll_ctl(eventloop->epfd, EPOLL_CTL_ADD, sockfd, &ev);
 
	while (1) {
		//多路复用器监视多个IO事件
		int nready = epoll_wait(eventloop->epfd, eventloop->events, 512, -1);
		if (nready < -1) {
			break;
		}
 
		int i = 0;
		//循环分发所有的IO事件给处理器
		for (i = 0; i < nready; ++i) {
			if (eventloop->events[i].events & EPOLLIN) {
				struct sockitem* si = (struct sockitem*)eventloop->events[i].data.ptr;
				si->callback(si->sockfd, eventloop->events[i].events, si);
			} 
 
			if (eventloop->events[i].events & EPOLLOUT) {
				struct sockitem* si = (struct sockitem*)eventloop->events[i].data.ptr;
				si->callback(si->sockfd, eventloop->events[i].events, si);
			}
		}
	}
	return 0;
}

原文链接:https://blog.csdn.net/weixin_53695360/article/details/123894158

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/586959.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

区块链快速参考(三)

原文&#xff1a;zh.annas-archive.org/md5/b5e57485b0609afbfba46ff759c5d264 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第十七章&#xff1a;去中心化应用程序 去中心化应用&#xff08;DApps&#xff09;是在去中心化网络上运行的应用程序&#xff0c;不受集…

2024五一杯数学建模B题思路分析 - 未来新城背景下的交通需求规划与可达率问题

文章目录 1 赛题选题分析 2 解题思路详细的思路过程放在文档中 ! ! &#xff01;&#xff01;&#xff01;&#xff01;&#xff01;3 最新思路更新 1 赛题 B题 未来新城背景下的交通需求规划与可达率问题 随着城市化的持续发展&#xff0c;交通规划在新兴城市建设中显得尤为关…

Linux搭建靶场

提前准备&#xff1a; 文章中所使用到的Linux系统&#xff1a;Ubantu20.4sqlilabs靶场下载地址&#xff1a;GitHub - Audi-1/sqli-labs: SQLI labs to test error based, Blind boolean based, Time based. 一. 安装phpstudy phpstudy安装命令&#xff1a;wget -O install.sh h…

Map和Set基础

目录 一、导论 二、Map 三、Set 本文找先不涉及两种数据结构的底层&#xff0c;目标是&#xff1a; 理解Map和Set的大体框架&#xff0c;了解他们有什么用&#xff0c;用在哪里的&#xff0c;然后再从浅层深入底层。 小编认为&#xff1a; 先了解也下Map和Set大体是用来做…

Mysql--创建数据库

一、创建一个数据库 “db_classes” mysql> create database db_classes; mysql> show databases; -------------------- | Database | -------------------- | db_classes | | information_schema | | mysql | | performance_schema | |…

开通Jetbrains个人账号,赠送这些付费插件

开通Jetbrains个人账号&#xff0c;或者Jetbrains现成账号的, 可赠送以下付费插件 现成账号&#xff1a;https://web.52shizhan.cn/activity/xqt8ly 个人账号&#xff1a;https://web.52shizhan.cn/legal 账号支持全家桶系列&#xff1a;AppCode,CLion,DataGrip,GoLand,Intell…

Codeforces Round 941 (Div. 2) (A~D)

1966A - Card Exchange 题意&#xff1a; 思路&#xff1a;手玩一下发现当存在某个数字个数超过k个&#xff0c;那么就能一直操作下去。那么答案就是k-1. void solve() {cin >> n >> m;map<int,int>mp;int maxx 1;for(int i 0 ; i < n ; i ){int x;c…

手把手教数据结构与算法:优先级队列(银行排队问题)

队列 基本概念 队列的定义 队列&#xff08;Queue&#xff09;&#xff1a;队列是一种常见的数据结构&#xff0c;遵循先进先出&#xff08;First-In-First-Out, FIFO&#xff09;的原则。在队列中&#xff0c;元素按照进入队列的顺序排列。队列是一个线性的数据结构&#x…

深入解析yolov5,为什么算法都是基于yolov5做改进的?(一)

YOLOv5简介 YOLOv5是一种单阶段目标检测算法&#xff0c;它在YOLOv4的基础上引入了多项改进&#xff0c;显著提升了检测的速度和精度。YOLOv5的设计哲学是简洁高效&#xff0c;它有四个版本&#xff1a;YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x&#xff0c;分别对应不同的模型大小…

深度学习从入门到精通——词向量介绍及应用

词向量介绍 词向量&#xff08;Word embedding&#xff09;&#xff0c;即把词语表示成实数向量。“好”的词向量能体现词语直接的相近关系。词向量已经被证明可以提高NLP任务的性能&#xff0c;例如语法分析和情感分析。词向量与词嵌入技术的提出是为了解决onehot的缺陷。它把…

pytorch中创建maskrcnn模型

0.模型输入/输出参数参见 链接: pytorch的mask-rcnn的模型参数解释 核心代码 GeneralizedRCNN(这里以mask-rcnn来解释说明) # 通过输入图像获取fpn特征图,注意这里的backbone不是直接的resnet,而是fpn化后的 features self.backbone(images.tensors) # 由于是mask-rcnn,故而…

如何快速搭建nginx服务

华子目录 nginx简介概念特点nginx框架nginx关键工作机制 nginx正向代理功能nginx反向代理功能nginx反向代理的工作流程代理本质 nginx负载均衡部署nginx常用命令systemctl系列nginx自带命令 nginx配置文件主配置文件/etc/nginx/nginx.conf内容结构模块分析配置分析注意示例 ngi…

Android创建快捷方式到桌面

效果图 参考 https://blog.51cto.com/u_16175498/8811197https://blog.51cto.com/u_16175498/8811197 权限 <uses-permission android:name"com.android.launcher.permission.INSTALL_SHORTCUT" /> 实现 if (Build.VERSION.SDK_INT > Build.VERSION_C…

【已解决】Python Selenium chromedriver Pycharm闪退的问题

概要 根据不同的业务场景需求&#xff0c;有时我们难免会使用程序来打开浏览器进行访问。本文在pycharm中使用selenium打开chromedriver出现闪退问题&#xff0c;根据不断尝试&#xff0c;最终找到的问题根本是版本问题。 代码如下 # (1) 导入selenium from selenium import …

C++ stack、queue以及deque

1、stack和queue常用接口 严格来说栈和队列的实现是容器适配器 1、常用接口&#xff1a; 栈&#xff1a;top、push、pop、size、emptystack - C Reference (cplusplus.com) 队列&#xff1a;top、push、pop、swap、size、emptyqueue - C Reference (cplusplus.com) 2、deque&a…

Android手势识别面试问题及回答

问题 1: 如何在Android中实现基本的手势识别&#xff1f; 答案: 在Android中&#xff0c;可以通过使用GestureDetector类来实现基本的手势识别。首先需要创建一个GestureDetector的实例&#xff0c;并实现GestureDetector.OnGestureListener接口来响应各种手势事件&#xff0c…

ubuntu安装mysql时候修改root密码

前情&#xff1a; 使用set password for rootlocalhost ‘passwd’&#xff1b; set password for ‘root’‘localhost’‘passwd’&#xff1b; update user set passwordpassword(‘passwd’) where user‘root’ and host ‘localhost’; flush privileges; 以上方法均报…

定制开发AI智能名片商城小程序:玩转积分制度的成功案例

在数字化浪潮席卷而来的今天&#xff0c;企业营销方式不断创新&#xff0c;力求在众多竞争对手中脱颖而出。其中&#xff0c;积分制度以其直观、有效的特点&#xff0c;成为了众多企业的营销利器。某时尚品牌“潮流前线”便是其中的佼佼者。他们通过定制一款AI智能名片商城小程…

德国著名自动化公司Festo设计了一款仿生蜜蜂,仅重34g,支持多只蜜蜂编队飞行!...

德国著名的气动元件研发及自动化解决方案供应商Festo公司近日展示了一款仿生蜜蜂&#xff08;BionicBee&#xff09;&#xff0c;重量只有34g&#xff0c;却完全可以实现自主飞行&#xff0c;还支持多只相同的蜜蜂机器人编队飞行。 BionicBee 重约 34 克&#xff0c;长 22 厘米…

二叉树的前序,中序,后序遍历

二叉树可以分为左子树&#xff0c;右子树和根节点。同时左子树和右子树又可以分为新的左子树和右子树加上新的根节点&#xff0c;以此类推。 二叉树的前序&#xff0c;中序&#xff0c;后序遍历也叫前根遍历&#xff0c;中根遍历&#xff0c;后根遍历或者前序遍历&#xff0c;…
最新文章