STM-32:GPIO 输出-点亮LED-流水灯-蜂鸣器

目录

  • 一、GPIO
    • 1.1GPIO简介
    • 1.2GPIO 硬件解析
      • 1.2.1保护二极管
      • 1.2.2 P-MOS、N-MOS 管
      • 1.2.3数据输入输出寄存器
      • 1.2.4复用功能输出
      • 1.2.5模拟输入输出
    • 1.3GPIO 的工作模式
      • 1.3.1 输入模式 (模拟/浮空/上拉/下拉)
      • 1.3.2 输出模式 (推挽/开漏)
      • 1.3.3 复用功能 (推挽/开漏)
      • 1.3.4 小结
  • 二、GPIO 端口的配置
    • 2.1 端口配置低寄存器(CRL)
    • 2.2 端口配置高寄存器(CRH)
    • 2.3 端口输入数据寄存器(IDR)
    • 2.4 端口输出数据寄存器(ODR)
  • 三、固件库函数
    • 3.1什么是固件库函数
    • 3.2为什么要学库函数
    • 3.3库函数配置
  • 四、点亮 LED 灯
    • 4.1连接图示
    • 4.2主函数
      • 4.2.1点亮一个LED
      • 4.2.2闪烁
  • 五、LED流水灯
    • 5.1接线图
    • 5.2主函数
  • 六、蜂鸣器
    • 6.1接线图
    • 6.2主函数
  • 注意:一定要看

一、GPIO

1.1GPIO简介

GPIO 即 通用型输入输出端口(General-Purose Input / Output)的简称,简单来说就是 STM32 单片机的可控制的引脚,功能类似于 8051 系列单片机的 P0-P3 端口。STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部的通讯、控制以及数据采集的功能。STM32 芯片的 GPIO 被分为很多组,每组 16 个引脚,所有的 GPIO 引脚都具有基本的输入输出功能。

最基本的输出功能是由 STM32 控制引脚输出高、底电平,实现开关控制,例如把 GPIO 引脚接入到 LED 灯上,就可以用来控制 LED 灯的亮灭,引脚接入到继电器或者三极管,那就可以通过继电器或者三极管来控制外部大功率电路的推断,实现电气隔离。

最基本的输入功能是检测外部输入的电平,如把 GPIO 引脚连接到轻触按键上,通过引脚电平的高低来区分按键是否按下。

1.2GPIO 硬件解析

STM32 芯片 GPIO 接口内部原理如下:
在这里插入图片描述

1.2.1保护二极管

引脚上的两个保护二级管用于防止引脚外部过高或过低的电压输入,当引脚电压高于 VDD时,上方的二极管导通,当引脚电压低于 Vss 时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。

1.2.2 P-MOS、N-MOS 管

GPIO引脚线路经过两个保护二极管后,向上流向“输入模式”结构,向下流向“输出模式”结构。先看输出模式部分,线路经过一个由 P-MOS 和 N-MOS 管组成的单元电路。这个结构使 GPIO 具有了“推挽输出”和“开漏输出”两种模式。

所谓的推挽输出模式,是根据这两个 MOS 管的工作方式来命名的。在该结构中输人高电平时,经过反向后,上方的 P-MOS 导通,下方的 N-MOS 关闭,对外输出高电平,即“推”;而在该结构中输入低电平时,经过反向后, N-MOS 管导通,P-MOS 关闭,对外输出低电平,即“挽”。当引脚高低电平切换时,两个管子轮流导通,P 管负责灌电流,N管负责拉电流,使其负载能力和开关速度都比普通的方式有很大的提高。推挽输出的低电平为0伏,高电平为3.3伏。推挽模式的等效电路如下:
在这里插入图片描述
而在开漏输出模式时,上方的 P-MOS 管完全不工作。如果我们控制输出为 0(低电平)时,则 P-MOS 管关闭,N-MOS 管导通,使输出接地,若控制输出为 1(无法直接输出高电平)时,则 P-MOS 管、N-MOS 管都关闭,所以引脚既不输出高电平,也不输出低电平,为高阻态。为正常使用时必须外部接上拉电阻,参考下图。它具有“线与”的特性,也就是说,若有很多个开漏模式的引脚连接到一起时,只有当所有的引脚都输出高阻态,才由上拉电阻提供高电平,此高电平的电压为外部上拉电阻所接的电源电压。若其中一个引脚为低电平,那线路就相当于短路接地,使得整条线路都为低电平(0V)。
在这里插入图片描述
推挽输出模式一般应用在输出电平为 0V 和 3.3V 而且需要高速切换开关状态的场合。在使用 STM32 的过程中,除了必须使用开漏输出模式的场合,我们基本上都是使用推挽输出模式。

开漏输出我们一般应用于 I2C、SMBUS 通讯等需要“线与”功能的场合。除此之外,还应用于电路电压不匹配的场合,如需要输出 5V 的高电平,就可以在外部接一个上拉电阻,上拉电源为 5V ,并且把 GPIO 设置为开漏输出模式,当输出高阻态时,由上拉电阻和电源向外输出 5V 的电平,具体见下图:
在这里插入图片描述

1.2.3数据输入输出寄存器

前面提到的双 MOS 管结构电路的输入信号,是由 GPIO“输出数据寄存器 GPIOx_ODR”提供的,因此我们通过修改输出数据寄存器的值就可以修改 GPIO 引脚的输出电平。而“置位/复位寄存器GPIOx_BSRR”可以通过修改输出数据寄存器的值从而影响电路的输出。

看 GPIO 结构框图的上半部分,GPIO 引脚经过内部的上、下拉电阻,可以配置成上/下拉输入,然后再连接到施密特触发器,信号经过触发器后,模拟信号转化为 0、1 的数字信号,然后存储在“输入数据寄存器 GPIOx_IDR”中,通过读取该寄存器就可以了解 GPIO 引脚的电平状态。

1.2.4复用功能输出

“复用功能输出”中的“复用”是指 STM32 的其它片上外设对 GPIO 引脚进行控制,此时 GPIO 引脚用作该外设功能的一部分,算作第二用途。从其他外设引出来的“复位功能输出信号”与 GPIO 本身的数据寄存器都连接到双 MOS 管结构的输入中,通过梯形结构作为开关切换选择。

1.2.5模拟输入输出

当 GPIO 引脚用于 ADC 采集电压的输入通道时,用作“模拟输入”功能,此时信号是不经过施密特触发器的,因为经过施密特触发器后信号只有 0、1 两种状态,所以 ADC 外设要采集到原始的模拟信号,信号源输入必须在施密特触发器之前。类似地,当 GPIO 引脚用于 DAC 作为模拟电压输出通道时,此时作为“模拟输出”功能,DAC 的模拟信号输出就不经过双 MOS 管结构,模拟信号直接输出到引脚。

1.3GPIO 的工作模式

GPIO 的结构决定了 GPIO 可以配置成以下模式:

typedef enum
 {
 	GPIO_Mode_AIN = 0x00,          // 模拟输入
 	GPIO_Mode_IN_FLOATING = 0x04,  // 浮空输入
 	GPIO_Mode_IPD = 0x28,          // 下拉输入
 	GPIO_Mode_IPU = 0x48,          // 上拉输入
 	GPIO_Mode_Out_OD = 0x14,       // 开漏输出
 	GPIO_Mode_Out_PP = 0x10,       // 推挽输出
 	GPIO_Mode_AF_OD = 0x1C,        // 复用开漏输出
 	GPIO_Mode_AF_PP = 0x18         // 复用推挽输出
 } GPIOMode_TypeDef;

1.3.1 输入模式 (模拟/浮空/上拉/下拉)

在输入模式时,施密特触发器打开,输出被禁止,可通过输入数据寄存器 GPIOx_IDR 读取 I/O 状态。其中输入模式,可设置为上拉、下拉、浮空和模拟输入四种。上拉和下拉输入很好理解,默认的电平由上拉或者下拉决定。浮空输入的电平是不确定的,完全由外部的输入决定,一般接按键的时候用的是这个模式。模拟输入则用于 ADC 采集。

1.3.2 输出模式 (推挽/开漏)

在输出模式中,推挽模式时双 MOS 管以轮流方式工作,输出数据寄存器 GPIOx_ODR 可控制 I/O输出高低电平。开漏模式时,只有 N-MOS 管工作,输出数据寄存器可控制 I/O 输出高阻态或低电平。输出速度可配置,有 2MHz、10MHz、50MHz 的选项。此处的输出速度即 I/O 支持的高低电平状态最高切换频率,支持的频率越高,功耗越大,如果功耗要求不严格,把速度设置成最大即可。在输出模式时施密特触发器是打开的,即输入可用,通过输入数据寄存器 GPIOx_IDR 可读取 I/O的实际状态。

1.3.3 复用功能 (推挽/开漏)

复用功能模式中,输出使能,输出速度可配置,可工作在开漏及推挽模式,但是输出信号源于其它外设,输出数据寄存器 GPIOx_ODR 无效;输入可用,通过输入数据寄存器可获取 I/O 实际状态,但一般直接用外设的寄存器来获取该数据信号。

通过对 GPIO 寄存器写入不同的参数,就可以改变 GPIO 的工作模式,要了解具体寄存器时一定要查阅 《STM32F10X-中文参考手册》 中对应外设的寄存器说明。在 GPIO 外设中,控制端口高低控制寄存器 CRH 和 CRL 可以配置每个 GPIO 的工作模式和工作的速度,每 4 个位控制一个 IO,CRH 控制端口的高八位,CRL 控制端口的低 8 位,具体的看 CRH 和 CRL 的寄存器描述。

1.3.4 小结

每个 I/O 端口可以自由编程,但 I/O 端口寄存器必须按 32 位被访问。 STM32 的很多 I/O 端口都兼容 5V 的,这些 I/O 端口在与 5V 电压的外设连接时很有优势,具体哪些 I/O 端口是兼容 5V 的,可以从芯片的数据手册引脚描述章节查到。
STM32 的每个 I/O 端口都有 7 个寄存器来控制。常用的 I/O 端口寄存器只有 4 个,分别为 CRL、CRH、IDR、ODR。CRL 和 CRH 控制着每个 I/O 端口的模式及输出速率。STM32 的端口配置表如下图所示:
在这里插入图片描述
在这里插入图片描述

二、GPIO 端口的配置

2.1 端口配置低寄存器(CRL)

端口配置低寄存器(GPIOx_CRL)(x = A…E),如下图所示:
在这里插入图片描述
配置方法:
在这里插入图片描述

2.2 端口配置高寄存器(CRH)

端口配置高寄存器(GPIOx_CRH) (x=A…E),如下图所示:
在这里插入图片描述
配置方法
在这里插入图片描述

2.3 端口输入数据寄存器(IDR)

端口输入数据寄存器(GPIOx_IDR) (x=A…E),如下图所示:
在这里插入图片描述
配置方法:
在这里插入图片描述

2.4 端口输出数据寄存器(ODR)

端口输出数据寄存器(GPIOx_ODR) (x=A…E),如下图所示:
在这里插入图片描述
配置方法:
在这里插入图片描述

GPIOA -> ODR = 0x0000; // 灯灭
GPIOA -> ODR = 0xFFFF; // 灯亮

三、固件库函数

3.1什么是固件库函数

固件库是指“STM32 标准函数库”,它是由 ST 公司针对 STM32 提供的函数接口,即API (Application Program Interface),开发者可调用这些函数接口来配置 STM32 的寄存器,使开发人员得以脱离最底层的寄存器操作,有开发快速,易于阅读,维护成本低等优点。

当我们调用库 API 的时候不需要挖空心思去了解库底层的寄存器操作,就像当年我们刚开始学习 C 语言的时候,用 prinft() 函数时只是学习它的使用格式,并没有去研究它的源码实现,但需要深入研究的时候,经过千锤百炼的库源码就是最佳学习范例。

实际上,库是架设在寄存器与用户驱动层之间的代码,向下处理与寄存器直接相关的配置,向上为用户提供配置寄存器的接口。库开发方式与直接配置寄存器方式的区别见图:
在这里插入图片描述

3.2为什么要学库函数

在以前 8 位机时代的程序开发中,一般直接配置芯片的寄存器,控制芯片的工作方式,如中断,定时器等。配置的时候,常常要查阅寄存器表,看用到哪些配置位,为了配置某功能,该置 1 还是置 0。这些都是很琐碎的、机械的工作,因为 8 位机的软件相对来说较简单,而且资源很有限,所以可以直接配置寄存器的方式来开发。

对于 STM32,因为外设资源丰富,带来的必然是寄存器的数量和复杂度的增加,这时直接配置寄存器方式的缺陷就突显出来了:
开发速度慢
程序可读性差
维护复杂
这些缺陷直接影响了开发效率,程序维护成本,交流成本。库开发方式则正好弥补了这些缺陷。而坚持采用直接配置寄存器的方式开发的程序员,会列举以下原因:

具体参数更直观
程序运行占用资源少
相对于库开发的方式,直接配置寄存器方式生成的代码量的确会少一点,但因为 STM32 有充足的资源,权衡库的优势与不足,绝大部分时候,我们愿意牺牲一点 CPU 资源,选择库开发。一般只有在对代码运行时间要求极苛刻的地方,才用直接配置寄存器的方式代替,如频繁调用的中断服务函数。

对于库开发与直接配置寄存器的方式,就好比编程是用汇编好还是用 C 好一样。在 STM32F1 系列刚推出函数库时引起程序员的激烈争论,但是,随着 ST 库的完善与大家对库的了解,更多的程序员选择了库开发。现在 STM32F1 系列和 STM32F4 系列各有一套自己的函数库,但是它们大部分是兼容的,F1 和 F4 之间的程序移植,只需要小修改即可。而如果要移植用寄存器写的程序,那简直跟脱胎换骨差不多。

3.3库函数配置

请看江科大视屏进行配置

四、点亮 LED 灯

4.1连接图示

在这里插入图片描述

4.2主函数

4.2.1点亮一个LED

#include "stm32f10x.h"                  // Device header
#include "Delay.h"        //延时函数

//点亮一个LED
int main(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	GPIO_InitTypeDef GPIO_InitStruct;
	GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP;
	GPIO_InitStruct.GPIO_Pin=GPIO_Pin_0;
	GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStruct);
	
//	GPIO_ResetBits(GPIOA,GPIO_Pin_0);//点亮  把指定端口设置为高电平
//	GPIO_SetBits(GPIOA,GPIO_Pin_0);//熄灭   把指定端口设置为低电平
//	GPIO_WriteBit(GPIOA,GPIO_Pin_0, Bit_RESET);//点亮   根据第三个参数设置端口
	GPIO_WriteBit(GPIOA,GPIO_Pin_0, Bit_SET);//熄灭
	
	while(1)
	{
		
	}
}

4.2.2闪烁

#include "stm32f10x.h"                  // Device header
#include "Delay.h"        //延时函数

int main(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	GPIO_InitTypeDef GPIO_InitStruct;
	GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP;
	GPIO_InitStruct.GPIO_Pin=GPIO_Pin_0;
	GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStruct);
	
	
	while(1)
	{
		GPIO_WriteBit(GPIOA,GPIO_Pin_0, Bit_RESET);//点亮   根据第三个参数设置端口
		Delay_ms(500);
	    GPIO_WriteBit(GPIOA,GPIO_Pin_0, Bit_SET);//熄灭
		Delay_ms(500);
	}
}

五、LED流水灯

5.1接线图

在这里插入图片描述

5.2主函数

#include "stm32f10x.h"                  // Device header
#include "Delay.h"        //延时函数


int main(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStruct;
	GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP;
	GPIO_InitStruct.GPIO_Pin=GPIO_Pin_All;
	GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStruct);
	
	
	while(1)
	{
		
		GPIO_Write(GPIOA,~0x0001);//0000 0000 0000 0001
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0002);//0000 0000 0000 0010
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0004);//0000 0000 0000 0100
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0008);//0000 0000 0000 1000
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0010);//0000 0000 0001 0000
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0020);//0000 0000 0010 0000
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0040);//0000 0000 0100 0000
		Delay_ms(100);
		GPIO_Write(GPIOA,~0x0080);//0000 0000 1000 0000
		Delay_ms(100);
	

	}
}

六、蜂鸣器

6.1接线图

在这里插入图片描述

6.2主函数

#include "stm32f10x.h"                  // Device header
#include "Delay.h"        //延时函数


int main(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	GPIO_InitTypeDef GPIO_InitStruct;
	GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP;
	GPIO_InitStruct.GPIO_Pin=GPIO_Pin_12;
	GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOB,&GPIO_InitStruct);
	
	while(1)
	{
		GPIO_ResetBits(GPIOB,GPIO_Pin_12);
		Delay_ms(500);
	    GPIO_SetBits(GPIOB,GPIO_Pin_12);
		Delay_ms(500);
	}
}


注意:一定要看

千万不要直接复制代码,因为是采用库函数编写,大家一定要自己动手,跟着视频学!!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/5889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT将引发大量而普遍的网络安全隐患

ChatGPT是一个基于人工智能的语言生成模型,它可以在任何给定的时间,使用自然语言生成技术,生成文本、对话和文章。它不仅可以被用来编写文本,还可以用来编写语言、生成图像和视频。目前, ChatGPT已广泛应用于语言翻译、…

【数据结构篇】-树(共计两万字,你真的搞懂了它吗)

友情链接:【数据结构与算法】首篇 - 思维导图 - 各部分内容目录 文章目录🚀树🚢一、树的原理精讲(一)树的定义(二)基本术语(三)树的性质🚢二、树的存储结构&a…

C++ STL:stack和queue的使用和底层实现

目录 一. 什么是stack和deque 二. stack和queue的使用方法 2.1 stack的常用接口 2.2 queue的常用接口 三. stack和queue的底层实现原理 3.1 容器适配器 3.2 deque(双端队列)的概念及抽象结构 3.3 deque的底层实现结构 3.4 deque的优缺点 —— 为…

try... excpet BaseException(异常处理捕获)

try ...except 是最常见的捕获处理异常的结构,其主要作用是将可能出现问题的代码块用try :包裹起来,不至于出现错误让程序崩溃,无法执行下去常见的try ...excpet 的结构有三种try:pass except BaseException as e &…

Azure SQL基础到实战(2)-部署

目录Azure 上的数据库服务的演变Azure SQL 部署选项Azure 虚拟机上的 SQL ServerIaaS 与PaaS无版本数据库服务SQL 托管实例SQL 数据库弹性数据库池Azure 上的数据库服务的演变 Azure SQL 是 Microsoft 作为 Azure 云计算平台的一部分提供的云数据库产品/服务。 与其他版本的 S…

含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

算法---扫雷游戏

题目 让我们一起来玩扫雷游戏! 给你一个大小为 m x n 二维字符矩阵 board ,表示扫雷游戏的盘面,其中: ‘M’ 代表一个 未挖出的 地雷, ‘E’ 代表一个 未挖出的 空方块, ‘B’ 代表没有相邻(…

服务器部署前后端分离项目

服务器部署前后端分离项目 文章目录服务器部署前后端分离项目一、安装环境安装jdk1、在/usr/local目录下创建jdk文件夹,并将jdk安装包放到/usr/local/jdk包下并解压2、配置jdk的环境变量3、进行编译,4、检测是否安装成功安装tomcat1、将tomcat放到/usr/l…

Linux内核模块开发之创建slab内存缓存(kmem_cache_*)

Linux内核模块开发之创建slab内存缓存(kmem_cache_*)一、创建专用的内存缓存编程接口二、实现步骤三、内存缓存的数据结构四、完整代码示例4.1、源代码4.2、编译和执行一、创建专用的内存缓存编程接口 创建内存缓存 kmem_cache_create。指定内存缓存分配…

软件测试零基础好入门么

零基础学习软件测试不失为一个好的选择,虽然IT行业里对小白最友好的非软件测试莫属了,但是也要看你个人在学习软件测试这件事上面花费了多少的时间和努力了~ 每年毕业季,IT行业依然是比较热门且收入是最高的行业。对于应届毕业生来说想要进入…

数据结构学习之路-队列

队列(Queue)定义队列的接口设计(使用双向链表)用栈实现队列的接口设计双端队列(Deque)循环队列(Circle Queue)循环双端队列(Ciecle Deque)定义 队列是一种特…

企业短视频推广怎么玩?制造业短视频推广干货分享

短视频作为一种新型营销方式,已经成为企业推广的重要手段。通过合理的推广策略、精美的短视频制作、适当的社交媒体平台选择和与用户的互动,企业可以实现短视频推广的效果。同时,借助短视频制作工具可以提高制作效率和降低制作成本&#xff0…

文件IO知识(一)

作者:爱塔居 专栏:JavaEE 作者简介:大三学生,希望和大家一起进步。 文章目录 目录 文章目录 前言 一、路径 二、文本文件和二进制文件 三、文件系统操作 四、“字符流”和“字节流” 五、utf8和unicode 前言 平时谈到的“文件”&…

Spring 源码解析 - BeanPostProcessor 扩展接口

一、BeanPostProcessor 扩展接口 BeanPostProcessor是Spring中的一个扩展接口,它可以在Spring容器实例化bean之后,在执行 bean的初始化方法前后,允许我们自定义修改新的 bean实例。比如修改 bean 的属性,将 bean 替换为动态代理等…

《Effective Objective-C 2.0 》 阅读笔记 item6

第6条:理解“属性”这一概念 1. 属性的概念 “属性”(property)是Objective-C的一项特性,用于封装对象中的数据。 Objective-C对象通常会把所需要的数据保存为各种实例变量,实例变量一般通过“存取方法”&#xff08…

GPT-4 免费体验方法

POE 在Quora上非常受欢迎的手机聊天机器人Poe App已经集成ChatGPT助手!除了最初集成的三个聊天机器人Sage、Claude和Dragonfly外,Poe现在还加入了第四位ChatGPT。由于使用了ChatGPT API,因此Poe拥有真正的ChatGPT。 现在更是第一批集成了GP…

JDK1.8去除永久代引入元空间的原因您知道吗

之前写了一篇文章 JVM中的堆和栈到底存储了什么 重点介绍了Java虚拟机运行时数据区中堆、栈以及方法区存储数据的相关知识很受大家欢迎,今天来介绍一下jdk 1.8开始引入的元空间,元空间的引入也是与Java虚拟机运行时存储数据有关。 元空间 JDK8之后就没…

02-Maven高级-分模块开发、依赖传递、聚合、继承(SpringBoot的部分底层原理)、多模块开发(环境切换)、Nexus私服搭建与使用

文章目录学习目标一、分模块开发与设计1. 分模块开发的意义问题导入模块拆分原则2. 分模块开发(模块拆分)问题导入2.1 创建Maven模块2.2 书写模块代码2.3 通过maven指令安装模块到本地仓库(install指令)2.4 代码演示二、依赖管理1…

高低温真空磁场探针台T8-EM5的技术参数

高低温真空磁场探针台是具备提供高低温、真空以及磁场环境的高精度实验台,它的诸多设计都是专用的。因此,高低温磁场探针台的配置主要是根据需求进行选配及设计。例如,要求的磁场值,均匀区大小、均匀度大小、样品台的尺寸等&#…

OJ系统刷题 第三篇

11202 - 任意两个数的和 时间限制 : 1 秒 内存限制 : 128 MB 编程序,电脑任意输入两个整数,计算出他们的和。 输入 a b(a b为整数,范围是-2,147,483,648~2,147,483,647) 输出 ab的和 样例 输入 1 1 输出 2 答案&a…
最新文章