C++手写协程项目(协程实现线程结构体、线程调度器定义,线程挂起函数、线程切换函数、线程恢复函数、线程结束函数、线程结束判断函数,模块测试)

协程结构体定义

之前我们使用linux下协程函数实现了线程切换,使用的是ucontext_t结构体,和基于这个结构体的四个函数。现在我们要用这些工具来实现我们自己的一个线程结构体,并实现线程调度和线程切换、挂起。

首先我们来实现以下线程结构体:

struct thread_t {
    ucontext_t ctx;
    void (*func)();
    void* args;
    int state;
    char stack[1024 * 128]; //128kB栈空间
};

其中state有四种值,RUNNABLE,RUNING,SUSPEND,END,分别对应0,1,2,3,即就绪,运行,挂起、终止这四种状态,对应操作系统下一个进程执行和终止之间的三种状态。

再写一个调度的结构体

struct scheduler {
    ucontext_t main;
    std::vector<thread_t> threads;
    int running_thread;
    
    scheduler():running_thread(-1) {};
};

调度器需要保存主函数上下文,需要调度的线程集合threads,用一个vector实现,和当前运行线程id;运行线程id初始时赋为-1,表示无线程正在运行。

这样线程结构体和线程调度器就已经实现和完成了。

接下来我们要实现下我们自己的线程创建函数,参数为调度器scheduler,执行函数func和执行函数的参数args

int thread_create(scheduler& myscheduler, void (*func)(), void* args) {
    thread_t *newthread = new thread_t();
    newthread->ctx.uc_link = &myscheduler.main;
    newthread->ctx.uc_stack.ss_sp = newthread->stack;
    newthread->ctx.uc_stack.ss_size = 1024*128;
    newthread->func = func;
    newthread->args = args;
    newthread->state = 0;
    myscheduler.threads.push_back(*newthread);
    return myscheduler.threads.size() - 1;
}

首先创建一个thread_t类型变量作为新线程,将其ctx变量的后继函数设定为调度器中主函数,栈空间和栈大小设置为其默认成员变量。对应参数赋值为给定参数方便后续使用。初始状态设置为就绪态,并将其放入调度器线程集合,线程id设置为当前线程集合大小-1.

线程挂起函数

int thread_yield(scheduler& myscheduler) {
    if (myscheduler.running_thread == -1) return 0;
    myscheduler.threads[myscheduler.running_thread].state = 2;
    setcontext(&myscheduler.main);
    return 1;
}

线程挂起函数首先判断调度器中当前运行线程id是否为-1,如果是的话就直接返回0,表示协程挂起失败。否则将正在运行线程id对应到调度器中线程集合中相应下标的元素,将其值置为2(挂起),将当前上下文设置为主函数,返回1;

线程恢复运行函数

int thread_resume(scheduler& myscheduler,int threadId) {
    if (threadId < 0 || threadId >= myscheduler.threads.size()) return -1;
    if (myscheduler.threads[threadId].state == 2) {
       // if (myscheduler.running_thread != -1) thread_yield(myscheduler);
        myscheduler.running_thread = threadId;
        myscheduler.threads[threadId].state = 1;
        swapcontext(&myscheduler.main,&myscheduler.threads[threadId].ctx);
    } else if (myscheduler.threads[threadId].state == 0) {    
       // if (myscheduler.running_thread != -1) thread_yield(myscheduler);
        myscheduler.running_thread = threadId;
        myscheduler.threads[threadId].state = 1;
        getcontext(&myscheduler.threads[threadId].ctx);
        makecontext(&myscheduler.threads[threadId].ctx, myscheduler.threads[threadId].func, 1, myscheduler.threads[threadId].args);
        swapcontext(&myscheduler.main,&myscheduler.threads[threadId].ctx);
    }
}

线程恢复运行函数首先判断给定线程Id是否<0或者>调度器线程集合大小,如果是就说明不满足条件,直接返回。否则判断其状态,我们需要处理的有挂起态和就绪态两种状态,两种情况下都需要将当前运行线程(如果有的话)挂起,将需要运行的线程状态置为1。如果当前需要运行线程之前是挂起,直接切换栈空间即可。否则需要将取当前栈空间并用makecontext函数处理下,再进行切换。

线程全部结束判断函数

int scheduler_finished(scheduler& myscheduler) {
    for (int i = 0; i < myscheduler.threads.size(); i++) {
        if (myscheduler.threads[i].state != 3) return 0;
    }
    return 1;
}

判断调度器内部线程集合里线程状态是否全为0,是就说明全部执行完,返回0,否则返回1。

线程结束状态设置函数

void thread_exit() {
    myscheduler.threads[running_thread].state = 3;
    myscheduler.running_thread = -1;
}

在每个线程函数尾调用,设置该线程状态为终止,设置调度器当前运行线程id为-1

运行结果如下.

测试代码如下:

#include <iostream>
#include <ucontext.h>
#include <vector>

struct thread_t {
    ucontext_t ctx;
    void (*func)();
    void* args;
    int state;
    char stack[1024 * 128]; //128kB栈空间
};

struct scheduler {
    ucontext_t main;
    std::vector<thread_t> threads;
    int running_thread;
    
    scheduler():running_thread(-1) {};
};


scheduler myscheduler;

int thread_create(scheduler& myscheduler, void (*func)(), void* args) {
    thread_t *newthread = new thread_t();
    newthread->ctx.uc_link = &myscheduler.main;
    newthread->ctx.uc_stack.ss_sp = newthread->stack;
    newthread->ctx.uc_stack.ss_size = 1024*128;
    newthread->func = func;
    newthread->args = args;
    newthread->state = 0;
    myscheduler.threads.push_back(*newthread);
    return myscheduler.threads.size() - 1;
}

int thread_yield(scheduler& myscheduler) {
    if (myscheduler.running_thread == -1) return 0;
    myscheduler.threads[myscheduler.running_thread].state = 2;
    swapcontext(&myscheduler.threads[myscheduler.running_thread].ctx, &myscheduler.main);
    return 1;
}


void thread_exit() {
    myscheduler.threads[running_thread].state = 3;
    myscheduler.running_thread = -1;
}

int thread_resume(scheduler& myscheduler,int threadId) {
    if (threadId < 0 || threadId >= myscheduler.threads.size()) return -1;
    if (myscheduler.threads[threadId].state == 2) {
        //if (myscheduler.running_thread != -1) thread_yield(myscheduler);
        myscheduler.running_thread = threadId;
        myscheduler.threads[threadId].state = 1;
        swapcontext(&myscheduler.main,&myscheduler.threads[threadId].ctx);
    } else if (myscheduler.threads[threadId].state == 0) {    
        //if (myscheduler.running_thread != -1) thread_yield(myscheduler);
        myscheduler.running_thread = threadId;
        myscheduler.threads[threadId].state = 1;
        getcontext(&myscheduler.threads[threadId].ctx);
        makecontext(&myscheduler.threads[threadId].ctx, myscheduler.threads[threadId].func, 1, myscheduler.threads[threadId].args);
        swapcontext(&myscheduler.main,&myscheduler.threads[threadId].ctx);
    }
}

int scheduler_finished(scheduler& myscheduler) {
    for (int i = 0; i < myscheduler.threads.size(); i++) {
        if (myscheduler.threads[i].state != 3) return 0;
    }
    return 1;
}

void thread1() {
    std::cout << "hello" << std::endl;
    thread_exit();
}

void thread2() {
    int n = 10;
    thread_yield(myscheduler);
    while (n--)
        std::cout << "world" << std::endl;
    thread_exit();
}

int main() {
    getcontext(&myscheduler.main);
    thread_create(myscheduler, &thread1, nullptr);
    thread_create(myscheduler, &thread2, nullptr);
    if (!scheduler_finished(myscheduler)) {
        thread_resume(myscheduler, 0);
    }
    if (!scheduler_finished(myscheduler)) {
        thread_resume(myscheduler, 1);
    }
    if (!scheduler_finished(myscheduler)) {
        thread_resume(myscheduler, 1);
    }
    return 0;
}

上面注释掉了两行代码,这两行代码如果不注释掉,就会反映出上面所写代码的一个致命问题——线程运行结束后无法自动设置状态为结束态,导致下一个线程在调用该函数的时候在该线程栈空间和主函数栈空间之间来回切换,会直接结束而不会执行线程2函数体。而且由于某些原因,其实我们只能同时运行一个线程,而无法多线程同时运行,所以挂起只能是由该线程自己主动释放的。

但是每个线程结束时都加了thread_exit之后就不会触发这个判断条件,可以正常使用了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/597555.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Splay 树简介

【Splay 树简介】 ● Treap 树解决平衡的办法是给每个结点加上一个随机的优先级&#xff0c;实现概率上的平衡。Splay 树直接用旋转调整树的形态&#xff0c;通过旋转改善树的平衡性。计算量小&#xff0c;效果好。 ● Splay 树的旋转主要分为“单旋”和“双旋”。 所谓“单旋”…

基于52单片机的AS608指纹密码锁电路原理图+源程序+PCB实物制作

目录 1、前言 2、实物图 3、PCB图 4、原理图 5、程序 资料下载地址&#xff1a;基于52单片机的AS608指纹密码锁电路原理图源程序PCB实物制作 1、前言 这是一个基于AS608STC89C52单片机的指纹识别和键盘密码锁。 里面包括程序&#xff0c;原理图&#xff0c;pcb图和实…

OpenNJet:云原生技术中的创新者与实践者

目录 引言OpenNJet介绍OpenNJet优势1. 性能无损动态配置2. 灵活的CoPilot框架3. 支持HTTP/34. 支持国密5. 企业级应用6. 高效安全 OpenNJet 编译与安装环境准备编译环境配置配置yum源yum 安装软件包创建符号连接修改 ld.so.conf 配置 编译代码 部署 WEB SERVER配置OpenNJet部署…

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-13-按键实验

前言&#xff1a; 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM&#xff08;MX6U&#xff09;裸机篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…

FTP协议与工作原理

一、FTP协议 FTP&#xff08;FileTransferProtocol&#xff09;文件传输协议&#xff1a;用于Internet上的控制文件的双向传输&#xff0c;是一个应用程序&#xff08;Application&#xff09;。基于不同的操作系统有不同的FTP应用程序&#xff0c;而所有这些应用程序都遵守同…

计算机网络【应用层】邮件和DNS

文章目录 电子邮件DNSDNS提供的服务&#xff1a;域名分级域名解析流程DNS资源记录DNS服务器类型 电子邮件 使用SMTP协议发送邮件之前&#xff0c;需要将二进制多媒体数据编码为ASCII码SMTP一般不使用中间邮件服务器发送邮件&#xff0c;如果收件服务器没开机&#xff0c;那么会…

解决jar包中没有主清单目录的问题

文章目录 解决jar包中没有主清单目录的问题问题描述环境描述方法一 | 阿里巴巴构造器的通用解决方案方式二 | 指定MANIFEST.MF路径 解决jar包中没有主清单目录的问题 问题描述 很简单可能很多人都遇到过&#xff0c;maven项目打成jar包后执行报错&#xff1a;jar包中没有主清单…

在模方中已经选好水岸线了,但是点处理瓦块的时候还是提示水岸线没选

答&#xff1a;能部分位置不闭合&#xff0c;双击右键闭合一下&#xff0c;可以强行闭合缺口。 模方是一款针对实景三维模型的冗余碎片、水面残缺、道路不平、标牌破损、纹理拉伸模糊等共性问题研发的实景三维模型修复编辑软件。模方4.1新增自动单体化建模功能&#xff0c;支持…

高情商回复(不是)

背景介绍 在抖音上有这样的视频&#xff0c;视频就是一张图&#xff0c;图上问了一个问题&#xff1a;饭局上&#xff0c;你去帮领导盛饭&#xff0c;领导接过后说&#xff1a;‘盛这么多&#xff0c;喂猪呢&#xff1f;’咋回&#xff1f; 底下有一个搞笑评论&#xff1a;猪可…

迅雷永久破解

链接&#xff1a;https://pan.baidu.com/s/1ZGb1ljTPPG3NFsI8ghhWbA?pwdok7s 下载后解压 以管理员身份运行绿化.bat&#xff0c;会自动生成快捷方式&#xff0c;如果没有可以在program中运行Thunder.exe

UDP如何端口映射?

UDP端口映射是一种网络技术&#xff0c;通过它可以实现在异地组网的情况下&#xff0c;不暴露在公网上&#xff0c;通过私有通道传输数据&#xff0c;并对数据进行安全加密&#xff0c;以保障数据的安全性。这项技术在如今日益复杂和危险的网络环境中显得尤为重要。 UDP&#x…

Rust 适合哪些场景?

目录 二、Rust 适合哪些场景&#xff1f; 三、Rust 社区的发展趋势如何&#xff1f; 四、Rust 快速搭建一个WebServer服务器 一、Rust是什么&#xff1f; Rust是一门赋予每个人构建可靠且高效软件能力的语言。 Rust 程序设计语言 一门帮助每个人构建可靠且高效软件的语言。…

tomcat-以服务的方式重启tomcat

背景 双击tomcat的bin目录下面的startup.bat&#xff0c;会留下一个cmd的窗口&#xff0c;很不优雅 使用service服务的方式启动&#xff0c;并且设置为自动启动 找到tomcat的bin目录输入cmd&#xff0c;按Enter&#xff0c;进入命令行界面。执行“service.bat install” 。&…

详解嵌入式MCU运行时分配的stack和heap

目录 概述 1 认识stack和heap 1.1 栈区&#xff08;stack&#xff09; 1.2 堆区&#xff08;heap&#xff09; 2 stack和heap的区别 2.1 管理方式的不同 2.2 空间大小不同 2.3 产生碎片不同 2.4 增长方式不同 2.5 分配方式不同 2.6 分配效率不同 3 确定stack和heap…

架构师:搭建Spring Security、OAuth2和JWT 的安全认证框架

1、简述 Spring Security 是 Spring 生态系统中的一个强大的安全框架,用于实现身份验证和授权。结合 OAuth2 和 JWT 技术,可以构建一个安全可靠的认证体系,本文将介绍如何在 Spring Boot 中配置并使用这三种技术实现安全认证,并分析它们的优点。 2、Spring Security Spri…

Linux基础04-Linux中目录和文件都能操作的命令

前面两节我们分别学习了目录操作命令和文件操作命令&#xff0c;那么有没有一些既可以操作目录&#xff0c;又可以操作文件的命令呢&#xff1f; 这样我们就不需要记住两套命令了。 其实还真有&#xff0c;今天这一章就带大家学习Linux中目录和文件都能操作的命令 最近无意间获…

深度学习之DCGAN

目录 须知 转置卷积 DCGAN 什么是DCGAN 生成器代码 判别器代码 补充知识 LeakyReLU&#xff08;x&#xff09; torch.nn.Dropout torch.nn.Dropout2d DCGAN完整代码 运行结果 图形显示 须知 在讲解DCGAN之前我们首先要了解转置卷积和GAN 关于GAN在这片博客中已经很…

GraphGPT——图结构数据的新语言模型

在人工智能的浪潮中&#xff0c;图神经网络&#xff08;GNNs&#xff09;已经成为理解和分析图结构数据的强大工具。然而&#xff0c;GNNs在面对未标记数据时&#xff0c;其泛化能力往往受限。为了突破这一局限&#xff0c;研究者们提出了GraphGPT&#xff0c;这是一种为大语言…

ASP.NET MVC(二) HtmlHelper

强类型 》》》 Form Html.Action() 执行一个Action&#xff0c;并返回html字符串。 Html.ActionLink() 生成一个超链接。 》》》 htmlhelper 扩展方法 /// 扩展方法 三要素 静态类静态方法this 》》》》上面需要引入命名空间&#xff0c; 》》》 不需要引入命名空间 pu…

每日OJ题_DFS解决FloodFill⑥_力扣529. 扫雷游戏

目录 力扣529. 扫雷游戏 解析代码 力扣529. 扫雷游戏 529. 扫雷游戏 难度 中等 让我们一起来玩扫雷游戏&#xff01; 给你一个大小为 m x n 二维字符矩阵 board &#xff0c;表示扫雷游戏的盘面&#xff0c;其中&#xff1a; M 代表一个 未挖出的 地雷&#xff0c;E 代表…
最新文章