netty 高性能架构设计--零拷贝

文章目录

  • 前言
  • 一、直接内存
    • 1.1 什么是直接内存
    • 1.2 代码实现
    • 1.3 使用直接内存的优缺点
  • 二、netty 零拷贝设计
    • 2.1 netty 直接内存
    • 2.2 netty 内存池
  • 三、零拷贝的两种方式


前言

本篇从源码层面剖析 netty 高性能架构设计之零拷贝,并且扩展讲述零拷贝的两种实现方式。


一、直接内存

1.1 什么是直接内存

在这里插入图片描述

直接内存,也被称为堆外内存,是Java应用程序通过直接方式从操作系统中申请的内存,不属于Java虚拟机(JVM)的内存管理范畴。这意味着直接内存的分配和释放不会受到Java堆大小的限制,但还是会受到本机总内存的大小及处理器寻址空间的限制。

直接内存的主要作用是为了提高某些操作的性能,尤其是在需要大量数据复制和IO操作的场景中。例如,在文件读写操作中,使用直接内存可以减少数据从系统缓冲区到Java缓冲区的复制步骤,从而提高读写速度。

直接内存的一个重要特点是,虽然它不由JVM直接管理,但仍然可能出现内存溢出的情况,因此在使用时需要谨慎。

在Java中,直接内存通常与Java的NIO(New I/O)库相关,特别是通过DirectByteBuffer类来操作。虽然直接内存的使用可以提高性能,但它也带来了额外的复杂性和风险,因此在决定使用直接内存时需要仔细权衡利弊。

1.2 代码实现

//分配堆内存
ByteBuffer buffer = ByteBuffer.allocate(1000);

//分配直接内存
ByteBuffer buffer = ByteBuffer.allocateDirect(1000);

直接内存源码分析:

public static ByteBuffer allocateDirect(int capacity) {
    return new DirectByteBuffer(capacity);
}


DirectByteBuffer(int cap) {                   // package-private
    super(-1, 0, cap, cap);
    boolean pa = VM.isDirectMemoryPageAligned();
    int ps = Bits.pageSize();
    long size = Math.max(1L, (long)cap + (pa ? ps : 0));
    //判断是否有足够的直接内存空间分配,可通过-XX:MaxDirectMemorySize=<size>参数指定直接内存最大可分配空间,如果不指定默认为最大堆内存大小,
    //在分配直接内存时如果发现空间不够会显示调用System.gc()触发一次full gc回收掉一部分无用的直接内存的引用对象,同时直接内存也会被释放掉
    //如果释放完分配空间还是不够会抛出异常java.lang.OutOfMemoryError
   Bits.reserveMemory(size, cap);

    long base = 0;
    try {
        // 调用unsafe本地方法分配直接内存
        base = unsafe.allocateMemory(size);
    } catch (OutOfMemoryError x) {
        // 分配失败,释放内存
        Bits.unreserveMemory(size, cap);
        throw x;
    }
    unsafe.setMemory(base, size, (byte) 0);
    if (pa && (base % ps != 0)) {
        // Round up to page boundary
        address = base + ps - (base & (ps - 1));
    } else {
        address = base;
    }
    
    // 使用Cleaner机制注册内存回收处理函数,当直接内存引用对象被GC清理掉时,
    // 会提前调用这里注册的释放直接内存的Deallocator线程对象的run方法
    cleaner = Cleaner.create(this, new Deallocator(base, size, cap));
    att = null;
}


// 申请一块本地内存。内存空间是未初始化的,其内容是无法预期的。
// 使用freeMemory释放内存,使用reallocateMemory修改内存大小
public native long allocateMemory(long bytes);
// openjdk8/hotspot/src/share/vm/prims/unsafe.cpp
UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory(JNIEnv *env, jobject unsafe, jlong size))
  UnsafeWrapper("Unsafe_AllocateMemory");
  size_t sz = (size_t)size;
  if (sz != (julong)size || size < 0) {
    THROW_0(vmSymbols::java_lang_IllegalArgumentException());
  }
  if (sz == 0) {
    return 0;
  }
  sz = round_to(sz, HeapWordSize);
  // 调用os::malloc申请内存,内部使用malloc这个C标准库的函数申请内存
  void* x = os::malloc(sz, mtInternal);
  if (x == NULL) {
    THROW_0(vmSymbols::java_lang_OutOfMemoryError());
  }
  //Copy::fill_to_words((HeapWord*)x, sz / HeapWordSize);
      return addr_to_java(x);
UNSAFE_END

1.3 使用直接内存的优缺点

优点:

  1. 不占用堆内存空间,减少了发生GC的可能
  2. java虚拟机实现上,本地IO会直接操作直接内存(直接内存=>系统调用=>硬盘/网卡),而非直接内存则需要二次拷贝(堆内存=>直接内存=>系统调用=>硬盘/网卡)

缺点:

  1. 初始分配较慢
  2. 没有JVM直接帮助管理内存,容易发生内存溢出。为了避免一直没有FULL GC,最终导致直接内存把物理内存耗完。我们可以指定直接内存的最大值,通过-XX:MaxDirectMemorySize来指定,当达到阈值的时候,调用system.gc来进行一次FULL GC,间接把那些没有被使用的直接内存回收掉。

二、netty 零拷贝设计

2.1 netty 直接内存

在这里插入图片描述
Netty的接收和发送ByteBuf采用DIRECT BUFFERS,使用堆外直接内存进行Socket读写,不需要进行字节缓冲区的二次拷贝。

所以 netty 的零拷贝只是减少了不必要的拷贝,并不是一次拷贝都没有

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 netty 内存池

在这里插入图片描述

继续看newDirectBuffer的实现,会看到一个是池化的实现,一个是非池化的实现
在这里插入图片描述

思考一下,为什么要将内存池化呢?

我们知道,内存中的空间大都是碎片化的,想要分配到一块合适大小的内存空间是比较难的,那么,提前将一块一块的内存申请好放到一个缓冲池中,是个不错的办法

//io.netty.buffer.PooledByteBufAllocator#newDirectBuffer
@Override
protected ByteBuf newDirectBuffer(int initialCapacity, int maxCapacity) {
    PoolThreadCache cache = threadCache.get();
    PoolArena<ByteBuffer> directArena = cache.directArena;

    final ByteBuf buf;
    if (directArena != null) {
        buf = directArena.allocate(cache, initialCapacity, maxCapacity);
    } else {
        buf = PlatformDependent.hasUnsafe() ?
                UnsafeByteBufUtil.newUnsafeDirectByteBuf(this, initialCapacity, maxCapacity) :
                new UnpooledDirectByteBuf(this, initialCapacity, maxCapacity);
    }

    return toLeakAwareBuffer(buf);
}

三、零拷贝的两种方式

知道了什么是直接内存和零拷贝,接下来看一下实现零拷贝的两种方法:mmap和sendFile
这两种方法在讲kafka零拷贝的时候有讲过:深度解析Kafka为何如此高效

  1. mmap文件映射机制
    这种方式是在用户态不再缓存整个IO的内容,改为只持有文件的一些映射信息。通过这些映射,"遥控"内核态的文件读写。这样就减少了内核态与用户态之间的拷贝数据大小,提升了IO效率。
    在这里插入图片描述

mmap文件映射机制是操作系统提供的一种文件操作机制,可以使用man 2 mmap查看。实际上在Java程序执行过程当中就会被大量使用。可以参考下JDK中的DirectByteBuffer实现机制

这种mmap文件映射方式,适合于操作不是很大的文件,通常映射的文件不建议超过2G。所以kafka将.log日志文件设计成1G大小,超过1G就会另外再新写一个日志文件。这就是为了便于对文件进行映射,从而加快对.log文件等本地文件的写入效率。

  1. sendfile文件传输机制
    这种机制可以理解为用户态,也就是应用程序不再关注数据的内容,只是向内核态发一个sendfile指令,要他去复制文件就行了。这样数据就完全不用复制到用户态,从而实现了零拷贝。相比mmap,连索引都不读了,直接通知操作系统去拷贝就是了。
    在这里插入图片描述例如在Kafka中,当Consumer要从Broker上poll消息时,Broker需要读取自己本地的数据文件,然后通过网卡发送给Consumer。这个过程当中,Broker只负责传递消息,而不对消息进行任何的加工。所以Broker只需要将数据从磁盘读取出来,复制到网卡的Socket缓冲区,然后通过网络发送出去。这个过程当中,用户态就只需要往内核态发一个sendfile指令,而不需要有任何的数据拷贝过程。Kafka大量的使用了sendfile机制,用来加速对本地数据文件的读取过程。

具体细节可以在linux机器上使用man 2 sendfile指令查看操作系统的帮助文件。JDK中8中java.nio.channels.FileChannel类提供了transferTo和transferFrom方法,底层就是使用了操作系统的sendfile机制。

这些底层的优化机制都是操作系统提供的优化机制,其实针对任何上层应用语言来说,都是一个黑盒,只能去调用,但是控制不了具体的实现过程。而上层的各种各样的语言,也只能根据操作系统提供的支持进行自己的实现。虽然不同语言的实现方式会有点不同,但是本质都是一样的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/600027.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

并发编程之阻塞队列BlockingQueue实战及其原理分析

1. 阻塞队列介绍 1.1 队列 是限定在一端进行插入&#xff0c;另一端进行删除的特殊线性表。 先进先出(FIFO)线性表。 允许出队的一端称为队头&#xff0c;允许入队的一端称为队尾。

机器学习第二天(监督学习,无监督学习,强化学习,混合学习)

1.是什么 基于数据寻找规律从而建立关系&#xff0c;进行升级&#xff0c;如果是以前的固定算式那就是符号学习了 2.基本框架 3.监督学习和无监督式学习&#xff1a; 监督学习&#xff1a;根据正确结果进行数据的训练&#xff1b; 在监督式学习中&#xff0c;训练数据包括输…

简易录制视频做3D高斯

系统环境 ubuntu20 &#xff0c;cuda11.8&#xff0c;anaconda配置好了3D高斯的环境。 具体参考3D高斯环境配置&#xff1a;https://blog.csdn.net/Son_of_the_Bronx/article/details/138527329?spm1001.2014.3001.5501 colmap安装&#xff1a;https://blog.csdn.net/Son_of…

W801学习笔记二十一:英语背单词学习应用——上

英语背单词是比较常见的学习APP&#xff0c;参考唐诗宋词应用&#xff0c;本章做一个类似的应用。 一、单词数据清洗及格式转换 诗词数据的获取渠道很多&#xff0c;一般可以按照年级来分文件。如一到九年级&#xff0c;四六级&#xff0c;雅思等等。 1、先从网上某某地方下载…

硬件设计细节1-缓冲驱动器使用注意事项

目录 一、缓冲驱动器二、实例分析1.硬件结构2.问题描述3.原因分析4.原因定位 三、结论 一、缓冲驱动器 缓冲驱动器通常用于隔离、电平转换等应用场景。在使用时&#xff0c;需要关注的点较多&#xff0c;如电平范围、频率范围、延时、控制方式、方向以及输入输出状态。通常&am…

JavaScript异步编程——03-Ajax传输json和XML

Ajax 传输 JSON JSON 的语法 JSON(JavaScript Object Notation)&#xff1a;是 ECMAScript 的子集。作用是进行数据的交换。语法更为简洁&#xff0c;网络传输、机器解析都更为迅速。 语法规则&#xff1a; 数据在键值对中 数据由逗号分隔 花括号保存对象 方括号保存数组…

弹性云服务器是什么,为何如此受欢迎

云计算作为当下炙手可热的技术领域&#xff0c;已然成为现代企业不可或缺的核心能力。云服务器作为云计算的基石之一&#xff0c;在这个数字化时代发挥着至关重要的作用。而弹性云服务器&#xff0c;作为云服务器的一种演进形式&#xff0c;更是备受瞩目。 弹性云服务器&#…

使用 GPT-4-turbo+Streamlit+wiki+calculator构建Math Agents应用【Step by Step】

&#x1f496; Brief&#xff1a;大家好&#xff0c;我是Zeeland。Tags: 大模型创业、LangChain Top Contributor、算法工程师、Promptulate founder、Python开发者。&#x1f4dd; CSDN主页&#xff1a;Zeeland&#x1f525;&#x1f4e3; 个人说明书&#xff1a;Zeeland&…

自动化运维管理工具 Ansible-----【inventory 主机清单和playbook剧本】

目录 一、inventory 主机清单 1.1inventory 中的变量 1.1.1主机变量 1.1.2组变量 1.1.3组嵌套 二、Ansible 的脚本 ------ playbook&#xff08;剧本&#xff09; 2.1 playbook介绍 2.2playbook格式 2.3playbooks 的组成 2.4playbook编写 2.5运行playbook 2.5.1ans…

学习笔记:【QC】Android Q qmi扩展nvReadItem/nvWriteItem

一、qmi初始化 流程图 初始化流程: 1、主入口&#xff1a; vendor/qcom/proprietary/qcril-hal/qcrild/qcrild/rild.c int main(int argc, char **argv) { const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, int, char **); rilInit RIL_Init; funcs rilInit…

【Linux】Linux线程

一、Linux线程的概念 1.什么是线程 1.一个进程的一个执行线路叫做线程&#xff0c;线程的一个进程内部的控制序列。 2.一个进程至少有一个执行线程 3.线程在进程内部&#xff0c;本质是在进程地址空间内运行 4.操作系统将进程虚拟地址空间的资源分配给每个执行流&#xff0…

基于51单片机的闭环反馈直流电机PWM控制电机转速测量( proteus仿真+程序+设计报告+原理图+讲解视频)

基于51单片机的闭环反馈直流电机PWM控制转速测量( proteus仿真程序设计报告原理图讲解视频&#xff09; 仿真图proteus7.8及以上 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0086 1. 主要功能&#xff1a; 基于51单片机的闭环…

js宏任务微任务输出解析

第一种情况 setTimeout(function () {console.log(setTimeout 1) //11 宏任务new Promise(function (resolve) {console.log(promise 1) //12 同步函数resolve()}).then(function () {console.log(promise then) //13 微任务})})async function async1() {console.log(async1 s…

语音识别--使用YAMNet识别环境音

⚠申明&#xff1a; 未经许可&#xff0c;禁止以任何形式转载&#xff0c;若要引用&#xff0c;请标注链接地址。 全文共计3077字&#xff0c;阅读大概需要3分钟 &#x1f308;更多学习内容&#xff0c; 欢迎&#x1f44f;关注&#x1f440;【文末】我的个人微信公众号&#xf…

2024.5.7

//头文件#ifndef MYWIDGET_H #define MYWIDGET_H#include <QWidget> #include <QPushButton> #include <QLineEdit> #include <QLabel> #include <QTextToSpeech> #include <QString> #include <QtDebug> #include <QIcon> #i…

js浏览器请求,post请求中的参数形式和form-data提交数据时数据格式问题(2024-05-06)

浏览器几种常见的post请求方式 Content-Type 属性规定在发送到服务器之前应该如何对表单数据进行编码。 默认表单数据会编码为 "application/x-www-form-urlencoded" post请求的参数一般放在Body里。 Content-Type&#xff08;内容类型&#xff09;&#xff0c;一般…

截图工具Snipaste:不仅仅是截图,更是效率的提升

在数字时代&#xff0c;截图工具已成为我们日常工作和生活中不可或缺的一部分。无论是用于工作汇报、学习笔记&#xff0c;还是日常沟通&#xff0c;一款好用的截图工具都能大大提升我们的效率。今天&#xff0c;我要向大家推荐一款功能强大且易于使用的截图软件——Snipaste。…

CRC校验原理及步骤

文章目录 CRC定义&#xff1a;CRC校验原理&#xff1a;CRC校验步骤&#xff1a; CRC定义&#xff1a; CRC即循环冗余校验码&#xff0c;是数据通信领域中最常用的一种查错校验码&#xff0c;其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查&#xff08;CRC&#…

JUC-synchronized练习-交替打印ABC

今天来练习一下synchronized 简单来利用synchronized实现一个字符串的交替打印 主要的实现设置一个全局的变量state&#xff0c;线程执行通过不断累加state&#xff0c;根据state对三取余的结果来判断该线程是否继续执行还是进入等待。并通过synchronized锁住一个共享变量loc…

设计模式之模板模式TemplatePattern(五)

一、模板模式介绍 模板方法模式&#xff08;Template Method Pattern&#xff09;&#xff0c;又叫模板模式&#xff08;Template Pattern&#xff09;&#xff0c; 在一个抽象类公开定义了执行它的方法的模板。它的子类可以更需要重写方法实现&#xff0c;但可以成为典型类中…