AI论文速读 |2024[IJCAI]TrajCL: 稳健轨迹表示:通过因果学习隔离环境混杂因素

题目: Towards Robust Trajectory Representations: Isolating Environmental Confounders with Causal Learning

作者:Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang(王琨), Zhengyang Zhou(周正阳), Sijie Ruan(阮思捷), Yuxuan Liang(梁宇轩)

机构:香港科技大学(广州),中国科学技术大学,北京理工大学
arXiv网址https://arxiv.org/abs/2404.14073

Cool Paperhttps://papers.cool/arxiv/2404.14073

关键词:轨迹表示,因果学习,环境混杂因素,稳健性,泛化能力

TL; DR: 本文提出了一个基于因果学习的轨迹建模框架TrajCL,通过构建结构因果模型来分析轨迹数据、环境因素和轨迹表示之间的相互作用,并设计了环境对齐模块和因果学习模块来隔离地理空间环境因素的混杂效应,从而提高轨迹表示的稳健性和泛化能力。

robust和robustness,在这里我都翻译为稳健性。

TrajCL同名的还有一篇发表在ICDE23的轨迹相似度检测的文章:Contrastive Trajectory Similarity Learning with Dual-Feature Attention
TrajCL

(那里的CL指的是对比学习(Contrastive Learning))

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

摘要

轨迹建模是指描述人类运动行为的特征,是理解移动模式的关键一步。 然而,现有的研究通常忽略地理空间背景的混杂影响,导致获得虚假的相关性和有限的泛化能力。 为了弥补这一差距,本文首先制定了结构因果模型(Structural Causal Model,SCM),从因果角度解读轨迹表示学习过程。 在 SCM 的基础上,进一步提出了一种基于因果学习的轨迹建模框架(TrajCL),该框架利用后门调整理论作为干预工具来消除地理空间上下文和轨迹之间的虚假相关性。 对两个真实世界数据集的大量实验验证了 TrajCL 显着增强了轨迹分类任务的性能,同时展示了卓越的泛化性和可解释性。

地理上下文对轨迹建模的影响

Q: 这篇论文试图解决什么问题?

A: 这篇论文试图解决的问题是如何在轨迹建模中消除地理空间环境因素带来的混杂效应,以提高轨迹表示的稳健性和泛化能力。具体来说,论文的主要贡献和解决的问题可以总结如下:

  1. 轨迹表示学习的因果视角:论文提出了一个结构因果模型(Structural Causal Model, SCM),从因果关系的角度分析轨迹表示学习过程中的变量关系,包括轨迹数据、环境因素以及轨迹表示之间的相互作用。
  2. 混杂因素的识别与隔离:论文指出,地理空间环境因素(如交通灯、道路类型等)可能会引入混杂效应,导致模型学习到的轨迹表示与实际的移动模式之间的关联性不具有因果性,而是由于环境因素的干扰产生的。
  3. 因果学习框架(TrajCL):为了解决上述问题,论文提出了一个基于因果学习的轨迹建模框架TrajCL,该框架利用后门调整理论(backdoor adjustment theory)作为干预工具,通过设计环境对齐模块和因果学习模块,来消除地理空间环境因素与轨迹之间的混杂关联。
  4. 实验验证:通过在两个真实世界的轨迹数据集上的广泛实验,论文验证了TrajCL在轨迹分类任务中的性能提升,展示了其在少数样本学习或不平衡样本学习场景下的优越泛化能力和可解释性。

总的来说,这篇论文的目标是通过因果学习方法,提高轨迹数据建模的稳健性和泛化能力,使其能够更好地理解和预测人类移动模式。

Q: 有哪些相关研究?

A: 论文中提到的相关研究主要分为两个领域:轨迹建模和因果推断。以下是一些关键的相关研究:

  1. 轨迹建模
    • 早期的基于启发式的方法,如使用空间网格方法来探索轨迹子结构的空间特性。
    • 利用局部和全局特征进行旅行模式分类的研究。
    • 将语义信息(如道路网络)融入轨迹分类的研究。
    • 利用深度学习模型,如循环神经网络(RNN)和变换器(Transformer)来捕捉轨迹的高阶运动模式。
  2. 因果推断
    • 传统因果推断研究,关注如何在不同分布下学习因果模型,并使用因果模型进行干预或反事实推断。
    • 因果表示学习,旨在结合深度学习和因果推断,广泛应用于计算机视觉、推荐系统、图数据挖掘等领域。
  3. 具体研究工作
    • [Lee and Han, 2008] 提出了一种基于空间网格的方法,用于轨迹分类。
    • [Zheng et al., 2008] 和 [Dodge et al., 2009] 提取了子网格和轨迹点的局部和全局特征。
    • [Xiao et al., 2017] 结合了语义信息,如道路网络,以分类车辆轨迹。
    • [Liu and Lee, 2017] 和 [Jiang et al., 2017] 使用了两种常见的RNN架构来捕捉高阶运动模式。
    • [Liu et al., 2019] 和 [Liang et al., 2021] 引入了段卷积加权机制和神经微分方程。
    • [Han et al., 2021] 和 [Yao et al., 2022] 通过图神经网络集成了道路网络的空间特征。
    • [Liang et al., 2022] 采用了先进的变换器架构来平衡轨迹建模的速度和准确性。
  4. 因果推断在其他领域的应用
    • [Li et al., 2023] 从因果角度研究了时间序列的分布变化。
    • [Deng et al., 2023] 构建了因果图来描述交通预测,并分析了时空特征与结果之间的因果关系。
    • [Xia et al., 2023] 应用因果推断来减轻时空图预测中的混杂效应。

这些研究表明,轨迹建模和因果推断是两个活跃的研究领域,并且在轨迹数据的分析和理解中具有重要的应用潜力。论文提出的TrajCL框架结合了这两个领域的技术,以提高轨迹表示的稳健性和泛化能力。

Q: 论文如何解决这个问题?

结构因果模型SCM

A: 论文通过提出一个名为TrajCL的因果学习框架来解决轨迹表示中的混杂效应问题。具体来说,TrajCL框架包括以下几个关键步骤:

  1. 结构因果模型(SCM):首先,论文建立了一个SCM来分析轨迹数据、环境因素和轨迹表示之间的因果关系。SCM帮助识别了环境因素作为混杂因子,可能在轨迹数据和轨迹表示之间引入的后门路径。
  2. 环境对齐模块:设计了一个环境对齐模块,该模块使用地理空间上下文来指导编码器分离因果和混杂表示。这个模块包括一个交叉注意力组件和一个分离分配组件,用于学习混杂感知和因果感知的软掩码。
  3. 因果学习模块:通过设计不同的策略来实现后门调整,包括分离学习策略、干预学习策略和最终的优化过程。分离学习策略使用多层感知器(MLP)对两个分支的特征进行分类,以区分因果特征和混杂特征。干预学习策略通过层次化操作混杂特征并将其与因果特征随机组合,以实现后门调整。
  4. 后门调整:利用后门调整理论,通过估计P(H|do(X))来阻断后门路径,其中do(·)表示do-calculus。这涉及到对环境因素进行干预,以消除其对轨迹表示的混杂影响。
  5. 实验验证:在两个真实世界的轨迹数据集上进行广泛的实验,验证了TrajCL在轨迹分类任务中的性能提升,并展示了其在少数样本学习和不平衡样本学习场景下的优越泛化能力和可解释性。

通过这些步骤,TrajCL能够有效地从人类轨迹中提取出稳健和领域不变的表示,同时减少对特定环境条件的过拟合风险。

TrajCL

Q: 论文做了哪些实验?

旅行模式分类

少样本

A: 论文中进行了多项实验来验证TrajCL框架的性能和稳健性。以下是实验的主要部分:

  1. 实验设置
    • 使用了两个公开的真实世界轨迹数据集:GeoLife和GrabPosisi。
    • 对轨迹数据进行了预处理,包括将原始轨迹分割成较短的子轨迹实例,并提取了地理空间上下文特征。
  2. 基线模型
    • 选择了五个代表性的基线模型,包括GRU、BiLSTM、GRU-D、STGN和TrajFormer,这些模型都是轨迹建模领域的常见模型。
  3. 性能比较
    • 在不同的模型设置下,比较了原始基线模型、加入环境信息后的模型以及应用了TrajCL框架后的模型的性能。
  4. 稳健性测试
    • 少数样本学习:将原始数据集划分为不同大小的子集,以模拟少数样本学习场景,并在不同模型上实施TrajCL。
    • 不平衡样本学习:通过调整训练集中类别比例,保持测试/验证集不变,以测试模型在不平衡样本条件下的性能。
  5. 消融研究
    • 通过移除TrajCL框架中的各个组件,来量化每个组件对整体性能的贡献。
  6. 解释性分析
    • 对环境对齐模块学习到的环境原型进行了可视化分析,以展示模型对不同地理空间上下文的感知能力。
  7. 超参数影响
    • 研究了环境代码簿大小和隐藏维度对模型性能的影响。
  8. 更多结果
    • 提供了在其他基线模型上实现TrajCL时在不平衡样本学习场景下的性能结果。

这些实验全面地评估了TrajCL框架在轨迹分类任务上的性能,特别是在面对环境混杂因素时的稳健性和泛化能力。实验结果表明,TrajCL能够有效地提高轨迹表示的稳健性,并且在多种不同的环境条件下都能取得良好的性能。

不平衡样本学习场景的探索

超参

Q: 总结一下论文的主要内容

A: 这篇论文的主要内容可以总结如下:

  1. 问题定义:论文针对的是轨迹建模中的一个关键问题,即如何从人类移动性数据中提取有用、泛化和简洁的轨迹表示,同时消除地理空间环境因素带来的混杂效应。
  2. 因果视角:通过构建结构因果模型(SCM),论文从因果关系的角度分析了轨迹表示学习过程中的变量关系,包括轨迹数据、环境因素和轨迹表示之间的相互作用。
  3. TrajCL框架:提出了一个基于因果学习的轨迹建模框架TrajCL,该框架利用后门调整理论作为干预工具,通过设计环境对齐模块和因果学习模块,来消除地理空间环境因素与轨迹之间的混杂关联。
  4. 环境对齐模块:该模块使用地理空间上下文来指导编码器分离因果和混杂表示,包括交叉注意力组件和分离分配组件。
  5. 因果学习模块:实施了多种策略来实现后门调整,包括分离学习策略、干预学习策略和最终的优化过程。
  6. 实验验证:在两个真实世界的轨迹数据集上进行了广泛的实验,验证了TrajCL在轨迹分类任务中的性能提升,并展示了其在少数样本学习和不平衡样本学习场景下的优越泛化能力和可解释性。
  7. 主要贡献:提出了一个新颖的因果视角来增强轨迹表示的稳健性,并通过实验验证了该框架的有效性。
  8. 未来工作:论文最后提出了一些未来工作的方向,包括扩展TrajCL的适用性以覆盖更多样化的环境,以及将其应用于更多现实的基于轨迹的任务,如旅行时间估计。

**:提出了一个新颖的因果视角来增强轨迹表示的稳健性,并通过实验验证了该框架的有效性。
8. 未来工作:论文最后提出了一些未来工作的方向,包括扩展TrajCL的适用性以覆盖更多样化的环境,以及将其应用于更多现实的基于轨迹的任务,如旅行时间估计。

总体而言,这篇论文通过引入因果学习的方法,为处理轨迹数据中的混杂效应提供了一种新的解决方案,并在理论和实践上都取得了积极的成果。

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅QRCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/601563.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI数据中心网络技术选型,InfiniBand与RoCE对比分析

InfiniBand与RoCE对比分析:AI数据中心网络选择指南 随着 AI 技术的蓬勃发展,其对数据中心网络的要求也日益严苛。低延迟、高吞吐量的网络对于处理复杂的数据密集型工作负载至关重要。本文分析了 InfiniBand 和 RoCE 两种数据中心网络技术,帮助…

91、动态规划-不同的路径

思路: 首先我们可以使用暴力递归解法,无非就是每次向下或者向右看看是否有解法,代码如下: public class Solution {public int uniquePaths(int m, int n) {return findPaths(0, 0, m, n);}private int findPaths(int i, int j,…

数据结构-线性表-应用题-2.2-12

1)算法的基本设计思想:依次扫描数组的每一个元素,将第一个遇到的整数num保存到c中,count记为1,若遇到的下一个整数还是等于num,count,否则count--,当计数减到0时,将遇到的下一个整数保存到c中,计…

04.2.配置应用集

配置应用集 应用集的意思就是:将多个监控项添加到一个应用集里面便于管理。 创建应用集 填写名称并添加 在监控项里面找到对应的自定义监控项更新到应用集里面 选择对应的监控项于应用集

[疑难杂症2024-004] 通过docker inspect解决celery多进程记录日志莫名报错的记录

本文由Markdown语法编辑器编辑完成. 写作时长: 2024.05.07 ~ 文章字数: 1868 1. 前言 最近我负责的一个服务,在医院的服务器上线一段时间后,利用docker logs查看容器的运行日志时,发现会有一个"莫名其妙"的报错&…

Verilog中4bit超前进位加法器

4bit超前进位加法器的逻辑表达式如下: 中间变量GiAiBi,PiAi⊕BiGi​Ai​Bi​,Pi​Ai​⊕Bi​ 和:SiPi⊕Ci−1Si​Pi​⊕Ci−1​,进位:CiGiPiCi−1Ci​Gi​Pi​Ci−1​ 用Verilog语言采用门级描述方式&am…

Buuctf-Misc题目练习

打开后是一个gif动图,可以使用stegsolve工具进行逐帧看。 File Format:文件格式 Data Extract:数据提取 Steregram Solve:立体试图 可以左右控制偏移 Frame Browser:帧浏览器 Image Combiner:拼图,图片拼接 所以可以知道我们要选这个Frame Browser …

odoo实施之创建行业demo

创建数据库,添加公司数据 选择应用,获取15天免费试用 创建完成 设置客户公司logo 创建用户 更改用户语言 前置条件:配置邮件 开发模式下,额外信息 加载demo数据

微信小程序 手机号授权登录

手机号授权登录 效果展示 这里面用的是 uni-app 官方的登录 他支持多端发布 https://zh.uniapp.dcloud.io/api/plugins/login.html#loginhttps://zh.uniapp.dcloud.io/api/plugins/login.html#login 下面是代码 <template><!-- 授权按钮 --><button v-if&quo…

微软 AI 研究团队推出 SIGMA:一个开源研究平台,旨在推动混合现实与人工智能交叉领域的研究与创新

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

如何永久删除服务和相关文件夹

如何永久删除服务和文件夹&#xff1f; How can I remove the service and folder permanently? 以AlibabaProtect服务为例 takeown /f "C:\Program Files (x86)\AlibabaProtect sc delete AlibabaProtect我运行了上述操作&#xff0c;并通过任务管理器杀死了“阿里巴巴…

AI时代的就业转型与个人发展

AI时代的就业转型与个人发展&#xff1a;机遇与挑战并存 AI出现的背景&#xff1a;技术革命的浪潮 随着21世纪信息技术的突飞猛进&#xff0c;人工智能&#xff08;Artificial Intelligence, AI&#xff09;作为一场技术革命的产物&#xff0c;正逐渐从科幻小说走向现实世界的…

linux的信号量的使用

1.信号量 在多线程情况下&#xff0c;线程要进入关键代码就得获取信号量&#xff08;钥匙&#xff09;{sem_init(&sem, 0, 0);}&#xff0c;没有信号量的情况下就一直等待sem_wait(&sem)&#xff0c;只到别人把钥匙&#xff08;sem_post(&sem)&#xff09;给你。 …

淘宝数据分析——Python爬虫模式♥

大数据时代&#xff0c; 数据收集不仅是科学研究的基石&#xff0c; 更是企业决策的关键。 然而&#xff0c;如何高效地收集数据 成了摆在我们面前的一项重要任务。 本文将为你揭示&#xff0c; 一系列实时数据采集方法&#xff0c; 助你在信息洪流中&#xff0c; 找到…

Linux提示:mount: 未知的文件系统类型“ntfs”

mount: 未知的文件系统类型“ntfs” 在Linux系统中&#xff0c;如果遇到“mount: 未知的文件系统类型‘ntfs’”的错误&#xff0c;这通常意味着您的系统没有安装支持NTFS文件系统的软件。为了挂载NTFS文件系统&#xff0c;您需要安装ntfs-3g软件包。以下是如何在不同Linux发行…

【Git】Git学习-10-11:GitHub,SHH配置,克隆仓库

学习视频链接&#xff1a;【GeekHour】一小时Git教程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1HM411377j/?vd_source95dda35ac10d1ae6785cc7006f365780 创建仓库 配置SSH密钥可以更加安全&#xff0c;方便地推送、拉取代码 根目录下&#xff0c;进入.ssh文件&am…

【busybox记录】【shell指令】unexpand

目录 内容来源&#xff1a; 【GUN】【unexpand】指令介绍 【busybox】【unexpand】指令介绍 【linux】【unexpand】指令介绍 使用示例&#xff1a; 空格转化成制表符 - 默认输出 空格转化成制表符 - 转换所有的空格 空格转化成制表符 - 指定制表位 常用组合指令&#…

【intro】图注意力网络(GAT)

论文阅读 https://arxiv.org/pdf/1710.10903 abstract GAT&#xff0c;作用于图结构数据&#xff0c;采用masked self-attention layers来弥补之前图卷积或类似图卷积方法的缺点。通过堆叠layers&#xff0c;让节点可以添加其邻居的特征&#xff0c;我们就可以给不同的邻居节…

C#语言核心

一、面向对象基本概念 万物皆对象&#xff0c;用程序来抽象&#xff08;形容&#xff09;对象&#xff0c;用面向对象的思想来编程 用中文去形容一类对象&#xff0c;把一类对象的共同点提取出来&#xff0c;然后用程序语言把它翻译过来&#xff0c;带着对象的概念在程序中使…

一文搞懂深度学习:最全神经网络介绍

本文是深度学习系列文章的第二篇&#xff0c;我们将深入探讨各种类型的人工神经网络&#xff0c;探索它们独特的特性和应用。 01 神经网络介绍 人工神经网络已经彻底改变了机器学习领域&#xff0c;并成为人工智能的基石&#xff0c;它的设计目的是模仿人类大脑的结构和功能&a…
最新文章