面试笔记——多线程使用场景

线程池使用场景(CountDownLatch, Future)

CountDownLatch
CountDownLatch(闭锁/倒计时锁)用来进行线程同步协作,等待所有线程完成倒计时(一个或者多个线程,等待其他多个线程完成某件事情之后才能执行)。

  • 构造参数用来初始化等待计数值
  • await() 用来等待计数归零
  • countDown() 用来让计数减一

在这里插入图片描述
上图中,给定初始值count = 3,调用await方法来判断count是否为0,若不为0,则将线程挂起等待,当count等于0之后,该线程才能继续执行。T2,T3,T4执行时,它们都调用了countdown(),每一次调用这个方法,都会对count减一。因此,调用了3次之后,T1线程继续执行。

CountDownLatch的使用demo:

import java.util.concurrent.CountDownLatch;

public class CountDownLatchDemo {

    public static void main(String[] args) throws InterruptedException {
        //初始化了一个倒计时锁 参数为 3
        CountDownLatch latch = new CountDownLatch(3);

        new Thread(() -> {
            System.out.println(Thread.currentThread().getName()+"-begin...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //count--
            latch.countDown();
            System.out.println(Thread.currentThread().getName()+"-end..." +latch.getCount());
        }).start();
        new Thread(() -> {
            System.out.println(Thread.currentThread().getName()+"-begin...");
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //count--
            latch.countDown();
            System.out.println(Thread.currentThread().getName()+"-end..." +latch.getCount());
        }).start();
        new Thread(() -> {
            System.out.println(Thread.currentThread().getName()+"-begin...");
            try {
                Thread.sleep(1500);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //count--
            latch.countDown();
            System.out.println(Thread.currentThread().getName()+"-end..." +latch.getCount());
        }).start();
        String name = Thread.currentThread().getName();
        System.out.println(name + "-waiting...");
        //等待其他线程完成
        latch.await();
        System.out.println(name + "-wait end...");
    }
    
}

运行结果:

Thread-0-begin...
Thread-1-begin...
main-waiting...
Thread-2-begin...
Thread-0-end...2
Thread-2-end...1
Thread-1-end...0
main-wait end...

使用场景一——批量导入:
项目上线之前,需要把数据库中的数据一次性的同步到es索引库中,数据可能有1000万左右,一次性读取数据肯定不行(oom异常),可以使用线程池的方式导入,利用CountDownLatch来控制,就能避免一次性加载过多,防止内存溢出:
在这里插入图片描述
在这里插入图片描述
使用场景二——数据汇总:
在一个电商网站中,用户下单之后,需要查询数据,数据包含了三部分:订单信息、包含的商品、物流信息;这三块信息都在不同的微服务中进行实现的,可以通过线程池实现,提升查询效率:
在这里插入图片描述
在实际开发的过程中,难免需要调用多个接口来汇总数据,如果所有接口(或部分接口)的没有依赖关系,就可以使用线程池+future来提升性能。

使用场景三——异步线程:
在很多软件中,都提供了搜索功能,并且会记录用户的搜索记录。在实现搜索功能的时候,不能让搜索功能受到保存搜索记录的影响,通常采取异步的方式来保存搜索记录,通过异步线程来实现该功能。当用户输入关键字开始搜索后,正常返回用户搜索的相关数据,再开一个线程来记录用户的历史记录,并把这个新开的线程放到线程池中去执行。

控制方法允许并发访问的线程数量

Semaphore 信号量,是JUC包下的一个工具类,底层是AQS,我们可以通过其限制执行的线程数量。

使用场景:通常用于那些资源有明确访问数量限制的场景,常用于限流 。

Semaphore使用步骤

  • 创建Semaphore对象,可以给一个容量
  • semaphore.acquire(): 请求一个信号量,这时候的信号量个数-1(一旦没有可使用的信号量,也即信号量个数变为负数时,再次请求的时候就会阻塞,直到其他线程释放了信号量)
  • semaphore.release():释放一个信号量,此时信号量个数+1
import java.util.concurrent.Semaphore;

public class SemaphoreCase {
    public static void main(String[] args) {
        // 1. 创建 semaphore 对象
        Semaphore semaphore = new Semaphore(3);
        // 2. 10个线程同时运行
        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                try {
                    // 3. 获取许可,计数-1
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                try {
                    System.out.println("running...");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("end...");
                } finally {
                    // 4. 释放许可  计数+1
                    semaphore.release();
                }
            }).start();
        }
    }

}

对ThreadLocal的理解

ThreadLocal是多线程中对于解决线程安全的一个操作类,它会为每个线程都分配一个独立的线程副本从而解决了变量并发访问冲突的问题。ThreadLocal 同时实现了线程内的资源共享。

ThreadLocal基本使用:

  • set(value) 设置值——ThreadLocal 自己作为 key,资源对象作为 value,放入当前线程的 ThreadLocalMap 集合中
  • get() 获取值——以 ThreadLocal 自己作为 key,到当前线程中查找关联的资源值
  • remove() 清除值——以 ThreadLocal 自己作为 key,移除当前线程关联的资源值

demo:

public class ThreadLocalTest {
    static ThreadLocal<String> threadLocal = new ThreadLocal<>();

    public static void main(String[] args) {
        new Thread(() -> {
            String name = Thread.currentThread().getName();
            threadLocal.set("value1");
            print(name);
            System.out.println(name + "-after remove : " + threadLocal.get());
        }, "t1").start();
        new Thread(() -> {
            String name = Thread.currentThread().getName();
            threadLocal.set("value2");
            print(name);
            System.out.println(name + "-after remove : " + threadLocal.get());
        }, "t2").start();
    }

    static void print(String str) {
        //打印当前线程中本地内存中本地变量的值
        System.out.println(str + " :" + threadLocal.get());
        //清除本地内存中的本地变量
        threadLocal.remove();
    }

}

输出:

t1 :value1
t1-after remove : null
t2 :value2
t2-after remove : null

ThreadLocal本质来说就是一个线程内部存储类,从而让多个线程只操作自己内部的值,从而实现线程数据隔离。
在这里插入图片描述
set方法:
在这里插入图片描述

get方法/remove方法:
在这里插入图片描述
ThreadLocal——内存泄漏

Java对象中的四种引用类型:强引用、软引用、弱引用、虚引用

  • 强引用:最为普通的引用方式,表示一个对象处于有用且必须的状态,如果一个对象具有强引用,则GC并不会回收它。即便堆中内存不足了,宁可出现OOM,也不会对其进行回收。
    • User user = new User();
  • 弱引用:表示一个对象处于可能有用且非必须的状态。在GC线程扫描内存区域时,一旦发现弱引用,就会回收到弱引用相关联的对象。对于弱引用的回收,无关内存区域是否足够,一旦发现则会被回收
    User user = new User(); 
    WeakReference weakReference = new WeakReference(user);
    

每一个Thread维护一个ThreadLocalMap,在ThreadLocalMap中的Entry对象继承了WeakReference。其中key为使用弱引用的ThreadLocal实例,value为线程变量的副本(强引用):

static class Entry extends WeakReference<ThreadLocal<?>> {
    /** The value associated with this ThreadLocal. */
    Object value;

    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

在这里插入图片描述
避免ThreaLocal内存泄漏——通过remove方法主动释放key、value。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/604243.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

漏扫神器Invicti V2024.4.0专业版

前言 Invicti Professional是Invicti Security公司推出的一个产品&#xff0c;它是一种高级的网络安全扫描工具。Invicti Professional旨在帮助组织发现和修复其网络系统中的潜在安全漏洞和弱点。它提供了全面的漏洞扫描功能&#xff0c;包括Web应用程序和网络基础设施的漏洞扫…

2024 GESP6级 编程第一题 游戏

题目描述 你有四个正整数 &#xff0c;并准备用它们玩一个简单的小游戏。 在一轮游戏操作中&#xff0c;你可以选择将 减去 &#xff0c;或是将 减去 。游戏将会进行多轮操作&#xff0c;直到当 时游戏结束。 你想知道游戏结束时有多少种不同的游戏操作序列。两种游戏操作…

[微信小程序] 入门笔记1-滚动视图组件

[微信小程序] 入门笔记1-滚动视图组件 1.页面&组件&渲染 在小程序是由一个个页面page组成, 而页面又是由一个个组件component组成.和网页类似,这里的组件指的就是输入框<input>,按钮<button>,文本<text>,图片<image>等元素.如果你学过网页一…

;【排列【

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话&#xff1a; 知不足而奋进&#xff0c;望远山而前行&am…

ethercat :推荐一个不错的ethercat主从站开源项目

一、引言 最近在研究EtherCAT,也极有兴趣想要搞通整个底层协议&#xff0c;将来有机会搞自己的软件EtherCAT产品。这里推荐一个不错的开源项目&#xff0c;与志同道合的朋友共同学习。 Ethercat-master 主站地址&#xff1a;https://github.com/OpenEtherCATsociety/SOEM Eth…

记一次DNS故障导致用户无法充值的问题(上)

背景&#xff1a; 刚刚过去了五一劳动节&#xff0c;回来后一上班接到客服运营团队反馈的节日期间的问题&#xff0c;反馈有部分用户无法充值。拿到的反馈资料有&#xff1a; 无法充值操作视频、问题时间、手机机型、手机网络情况。 1、从视频中看到用户点击支付后没有任何反…

DRF视图基类使用方法

【 一 】drf之请求 请求对象Request 【 0 】前言 ​ 在 Python 中&#xff0c;通常通过 request 对象来处理 HTTP 请求&#xff0c;尤其是在 web 开发中&#xff0c;比如使用 Django、Flask 等框架时会经常接触到这个对象。request 对象是框架提供的&#xff0c;用于封装客户…

[附源码]秦时明月6.2魔改版_搭建架设教程_附GM工具_安卓苹果

本教程仅限学习使用&#xff0c;禁止商用&#xff0c;一切后果与本人无关&#xff0c;此声明具有法律效应&#xff01;&#xff01;&#xff01;&#xff01; 教程是本人亲自搭建成功的&#xff0c;绝对是完整可运行的&#xff0c;踩过的坑都给你们填上了 一. 演示视频 秦时明…

stack的使用

1.栈的定义 我们可以看到模板参数里面有一个容器适配器 &#xff0c;什么是适配器&#xff1f;比如充电器就叫做电源适配器&#xff0c;用在做转换&#xff0c;对电压进行相关的转换适配我们的设备。栈&#xff0c;队列不是自己直接管理数据&#xff0c;是让其他容器管理数据&a…

缓存雪崩、击穿、击穿

缓存雪崩&#xff1a; 就是大量数据在同一时间过期或者redis宕机时&#xff0c;这时候有大量的用户请求无法在redis中进行处理&#xff0c;而去直接访问数据库&#xff0c;从而导致数据库压力剧增&#xff0c;甚至有可能导致数据库宕机&#xff0c;从而引发的一些列连锁反应&a…

【linux】进程概念|task_struct|getpid|getppid

目录 ​编辑 1.进程的概念 进程的基本概念 进程与程序的主要区别 进程的特征 进程的状态 描述进程—PCB task_struct中的内容 查看进程 1.创建一个进程&#xff0c;运行以下代码 通过系统调用获取进程标示符 getpid()以及getppid() 1.进程的概念 进程的基本概念…

JRT失控处理打印和演示

基于JRT完备的脚本化和打印基础&#xff0c;基于JRT的业务可以轻松的实现想要的打效果&#xff0c;这次以质控图的失控处理打印和月报打印来分享基于JRT的打印业务实现。 演示视频链接 失控报告打印 失控处理打印的虚拟M import JRT.Core.DataGrid.GridDto; import JRT.Co…

微信小程序开发-数据事件绑定

&#x1f433;简介 数据绑定 数据绑定是一种将小程序中的数据与页面元素关联起来的技术&#xff0c;使得当数据变化时&#xff0c;页面元素能够自动更新。这通常使用特定的语法&#xff08;如双大括号 {{ }}&#xff09;来实现&#xff0c;以便在页面上展示动态数据。 事件绑…

分布式与一致性协议之ZAB协议(八)

ZAB协议 如何实现读操作 相比写操作&#xff0c;读操作的处理要简单很多&#xff0c;因为接收到度请求的节点只需要查询本地数据&#xff0c;然后响应数据给客户端就可以了。读操作的核心流程如图所示。 1.跟随者在FollowerRequestProcessor.processRequest()中接收到度请求…

Python深度学习基于Tensorflow(6)神经网络基础

文章目录 使用Tensorflow解决XOR问题激活函数正向传播和反向传播解决过拟合权重正则化Dropout正则化批量正则化 BatchNormal权重初始化残差连接 选择优化算法传统梯度更新算法动量算法NAG算法AdaGrad算法RMSProp算法Adam算法如何选择优化算法 使用tf.keras构建神经网络使用Sequ…

射频无源器件之电桥

一. 电桥的定义及作用 电桥主要用于实现微波大功率功放系统的功率合成分配,信号采集等功能,被广泛应用于中国及全球4G/5G基站、5G网络覆盖、北斗导航天线、车载高精度导航(无人驾驶)天线等。可将信号分成有相位差的两路,90度电桥相位差90,180度电桥相位差180。 常说的3d…

【CSS】认识CSS选择器及各选择器对应的用法

目录 一、什么是CSS&#xff1f; 二、CSS 选择器 1. 标签选择器 2. 类选择器 3. ID选择器 4. 通配符选择器 5. 复合选择器 一、什么是CSS&#xff1f; CSS(Cascading Style Sheet)&#xff0c;层叠样式表。它与 HTML&#xff08;超文本标记语言&#xff09;一起使用&am…

c++11 的explicit关键字 -- 显示构建对象

概述: 在平时我们定义一个类&#xff0c;然后创建类对象可以有多种方式&#xff0c;主要分为两种: 声明一个Student类: class Student { public: Student(int age) { m_age age; } private: int m_age; }; 显示构建(explicit) Student s1(5); //…

全栈开发之路——前端篇(5)组件间通讯和接口等知识补充

全栈开发一条龙——前端篇 第一篇&#xff1a;框架确定、ide设置与项目创建 第二篇&#xff1a;介绍项目文件意义、组件结构与导入以及setup的引入。 第三篇&#xff1a;setup语法&#xff0c;设置响应式数据。 第四篇&#xff1a;数据绑定、计算属性和watch监视 辅助文档&…

WPF 图片显示某一部分区域

效果图&#xff1a; 代码&#xff1a; <Image Width"32"HorizontalAlignment"Right"Height"32"Source"../../Resources/Images/BLUEWOLF.jpg"><Image.Clip><PathGeometry><PathFigure StartPoint"32,32&quo…
最新文章