【Spark】Spark编程体验,RDD转换算子、执行算子操作(六)

Spark编程体验

项目依赖管理

<dependencies>
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>2.12.10</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.12</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.12</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.23</version>
    </dependency>

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-hive_2.12</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_2.12</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
        <version>3.2.1</version>
    </dependency>
</dependencies>

<build>
    <finalName>chapter1.WordCount</finalName>
    <plugins>
        <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <version>3.4.6</version>
            <executions>
                <execution>
                    <goals>
                        <goal>compile</goal>
                        <goal>testCompile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

项目编码

spark入门程序wordcount:

package com.fesco.bigdata.spark
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
 * scala版本的wordcount
 */
object ScalaWordCountApp {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName(s"${ScalaWordCountApp.getClass.getSimpleName}")
.setMaster("local[*]")
val sc = new SparkContext(conf)
//加载数据
val file: RDD[String] = sc.textFile("file:/E:/data/spark/hello.txt")
   //按照分隔符进行切分
val words:RDD[String] = lines.flatMap(line => line.split("\\s+"))
//每个单词记为1次
val pairs:RDD[(String, Int)] = words.map(word => (word, 1))
//聚合数据
val ret:RDD[(String, Int)] = pairs.reduceByKey(myReduceFunc)
//export data to external system
ret.foreach(println)
}
sc.stop()
}
def myReduceFunc(v1: Int, v2: Int): Int = {
v1 + v2
}
}

Master URL说明
首先在编程过程中,至少需要给spark程序传递一个参数master-url,通过sparkConf.setMaster来完成。改参数,代表的是spark作业的执行方式,或者指定的spark程序的cluster-manager的类型。
表-1 模式选择
在这里插入图片描述

spark程序的其他提交方式

加载hdfs中的文件:

object RemoteSparkWordCountOps {
def main(args: Array[String]): Unit = {
    //创建程序入口
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    //设置日志级别
    sc.setLogLevel("WARN")
    //加载数据
    val file = sc.textFile("hdfs://hadoop101:8020//wordcount//words.txt")
    //切分
    val spliFile: RDD[String] = file.flatMap(_.split(" "))
    //每个单词记为1次
    val wordAndOne: RDD[(String, Int)] = spliFile.map((_, 1))
    //聚合
    val wordAndCount: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    //打印输出
    wordAndCount.foreach(println)
    //释放资源
    sc.stop()
}
}

提交spark程序到集群中

首先需要将spark-core模块进行打包,其次上传到集群中,才可以进行提交作业到spark或者yarn集群中运行。
1)Client:

bin/spark-submit \
--class chapter1.WordCount \
--master spark://hadoop101:7077 \
/root/word.jar \
hdfs://hadoop101:8020/wordcount/words.txt

2)Cluster:

bin/spark-submit \
--class chapter1.WordCount \
--master spark://hadoop101:7077 \
/root/word.jar \
hdfs://hadoop101:8020/wordcount/words.txt \
hdfs://hadoop101:8020/wordcount/output1

Spark RDD操作

Spark执行流程
在上一讲中,我们知道了什么是Spark,什么是RDD、Spark的核心构成组件,以及Spark案例程序。在这一讲中,我们将继续需要Spark作业的执行过程,以及编程模型RDD的各种花式操作,首先来学习Spark作业执行流程。
WordCount执行流程
Wordcount执行流程如图-1所示。
在这里插入图片描述

图-1 wordcount执行流程
在上图中我们可以看到rdd(partition)和rdd之间是有依赖关系的,大致分为两种:窄依赖(Narrow Dependency)和宽依赖(Wide/Shuffle Dependency)。
1)窄依赖:rdd中partition中的数据,只依赖于父rdd中的一个分区,把这种依赖关系,称之为窄依赖,常见的窄依赖操作有:flatMap、map、filter、union、coalesce等等。
2)宽依赖:与窄依赖对应的,partition中的数据,依赖于父rdd中所有的partition,把这种依赖关系称之为宽依赖,常见的宽依赖操作:distinct、reduceByKey、groupByKey、repartition等等。
总而言之,rdd和rdd是有依赖关系的,我们把rdd和rdd之间关系构成的一个图或者依赖的链条,称之为rdd的lineage(血统),是保障spark容错的一个重要支撑。
Spark作业提交流程
下面我们一同来看spark作业提交流程,流程如图-2所示:
在这里插入图片描述

图-2 spark作业提交流程
RDD的基本操作
RDD概述
在较高的层次上,每个Spark应用程序都由一个驱动程序组成,该驱动程序运行用户的主功能并在集群上执行各种并行操作。Spark提供的主要抽象是一个弹性分布式数据集(RDD),它是一个跨集群节点划分的元素集合,可以并行操作。RDD是从Hadoop文件系统(或任何其他支持Hadoop的文件系统)中的一个文件或驱动程序中现有的Scala集合开始创建的,并对其进行转换。用户还可以要求Spark将RDD持久化在内存中,这样就可以跨并行操作高效地重用RDD。最后,RDD会自动从节点故障中恢复。
RDD分类
需要知道RDD操作算子的分类,基本上分为两类:transformation和action,当然更加细致的分,可以分为输入算子,转换算子,缓存算子,行动算子,整个RDD原生数据空间如图-3所示。

在这里插入图片描述
图-3 RDD原生数据空间
1)输入:在Spark程序运行中,数据从外部数据空间(如分布式存储:textFile读取HDFS等,parallelize方法输入Scala集合或数据)输入Spark,数据进入Spark运行时数据空间,转化为Spark中的数据块,通过BlockManager进行管理。
2)运行:在Spark数据输入形成RDD后便可以通过转换算子,如filter等,对数据进行操作并将RDD转化为新的RDD,通过Action算子,触发Spark提交作业。 如果数据需要复用,可以通过Cache算子,将数据缓存到内存。
3)输出:程序运行结束数据会输出Spark运行时空间,存储到分布式存储中(如saveAsTextFile输出到HDFS),或Scala数据或集合中(collect输出到Scala集合,count返回Scala int型数据)。
RDD初始化
RDD的初始化,原生api提供的2种创建方式,一种就是读取文件textFile,还有一种就是加载一个scala集合parallelize。当然,也可以通过transformation算子来创建的RDD。
RDD算子使用
transformation转换操作
map算子
rdd.map(p: A => B):RDD,对rdd集合中的每一个元素,都作用一次该func函数,之后返回值为生成元素构成的一个新的RDD。

val sc = new SparkContext(conf)
//map 原集合*7
val list = 1 to 7
//构建一个rdd
val listRDD:RDD[Int] = sc.parallelize(list)
//listRDD.map((num:Int) => num * 7)
//listRDD.map(num => num * 7)
val ret = listRDD.map(_ * 7)
ret.foreach(println)

flatMap算子
rdd.flatMap(p: A => 集合):RDD ==>rdd集合中的每一个元素,都要作用func函数,返回0到多个新的元素,这些新的元素共同构成一个新的RDD。

def  flatMapOps(sc:SparkContext): Unit = {
val list = List(
"jia jing kan kan kan",
"gao di di  di di",
"zhan yuan qi qi"
)
val listRDD = sc.parallelize(list)
listRDD.flatMap(line => line.split("\\s+"))
.foreach(println)
}

mapPartitions算子
mapPartitions(p: Iterator[A] =>Iterator[B]),上面的map操作,一次处理一条记录;而mapPartitions一次性处理一个partition分区中的数据。
注意:虽说mapPartitions的执行性能要高于map,但是其一次性将一个分区的数据加载到执行内存空间,如果该分区数据集比较大,存在OOM的风险。

//创建RDD并指定分区数
val array = 1 to 10
val listRDD:RDD[Int] = sc.parallelize(array,2)	
//通过-将分区之间的数据连接
val result: RDD[String] = rdd.mapPartitions(x=>Iterator(x.mkString("-")))
//打印输出
println(result.collect().toBuffer)
mapPartitionsWithIndex算子
mapPartitionsWithIndex((index,p:Iterator[A]=>Iterator[B])),该操作比mapPartitions多了一个index,代表就是后面p所对应的分区编号:rdd的分区编号,命名规范,如果有N个分区,分区编号就从0...N-1。
val rdd: RDD[Int] = sc.parallelize(1 to 16,4)
//查看每个分区当中都保存了哪些数据
val result: RDD[String] = rdd.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(",")))
//打印输出
result.foreach(println)

sample算子
1)sample(withReplacement, fraction, seed):随机抽样算子,sample主要工作就是为了来研究数据本身,去代替全量研究会出现类似数据倾斜(dataSkew)等问题,无法进行全量研究,只能用样本去评估整体。
2)withReplacement:Boolean:有放回的抽样和无放回的抽样。
3)fraction:Double:样本空间占整体数据量的比例,大小在[0,1]。
4)seed:Long:是一个随机数的种子,有默认值,通常不需要传参。
需要说明一点的是,这个抽样是一个不准确的抽样,抽取的结果数可能在准确的结果上下浮动。

def sampleOps(sc: SparkContext): Unit = {
val list = sc.parallelize(1 to 100000)
val sampled1 = list.sample(true, 0.01)
println("sampled1 count: " + sampled1.count())
val sampled2 = list.sample(false, 0.01)
println("sampled2 count: " + sampled2.count())
}

union算子
rdd1.union(rdd2)相当于sql中的union all,进行两个rdd数据间的联合,需要说明一点是,该union是一个窄依赖操作,rdd1如果有N个分区,rdd2有M个分区,那么union之后的分区个数就为N+M。

val rdd1 = sc.parallelize(1 to 5,3)
//查看每个分区当中都保存了哪些数据
rdd1.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
val rdd2: RDD[Int] = sc.parallelize(5 to 7,2)
//查看每个分区当中都保存了哪些数据
rdd2.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
//union整合
val result: RDD[Int] = rdd1.union(rdd2)
//获取数据
println(result.collect().toBuffer)
//查看每个分区当中都保存了哪些数据
result.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
//获取分区数
println(result.getNumPartitions)

join算子
1)rdd1.join(rdd2) 相当于sql中的join连接操作
A(id) a, B(aid) b
select * from A a join B b on a.id = b.aid
2)交叉连接: across join
select * from A a across join B ====>这回产生笛卡尔积。
3)内连接: inner join,提取左右两张表中的交集
select * from A a inner join B on a.id = b.aid 或者
select * from A a, B b where a.id = b.aid
4)外连接:outer join
5)左外连接:left outer join 返回左表所有,右表匹配返回,匹配不上返回null
select * from A a left outer join B on a.id = b.aid
6)右外连接:right outer join 刚好是左外连接的相反
select * from A a left outer join B on a.id = b.aid
7)全连接:full join
8)全外连接:full outer join = left outer join + right outer join
前提:要先进行join,rdd的类型必须是K-V。
对join操作可以归纳为如图-4所示。
在这里插入图片描述

图-4 sql 各种join连接图

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("demo").setMaster("local[*]")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val rdd1: RDD[(Int, String)] = sc.parallelize(Array((1,"a"),(2,"b"),(3,"c")))
val rdd2: RDD[(Int, Int)] = sc.parallelize(Array((1,4),(2,5),(5,6)))
//join操作
val result: RDD[(Int, (String, Int))] = rdd1.join(rdd2)
//打印输出
println(result.collect().toBuffer)
//leftOutJoin操作
val result1: RDD[(Int, (String, Option[Int]))] = rdd1.leftOuterJoin(rdd2)
//打印输出
println(result1.collect().toBuffer)
//rightOuterJoin
val result2: RDD[(Int, (Option[String], Int))] = rdd1.rightOuterJoin(rdd2)
//打印输出
println(result2.collect().toBuffer)
//fullOuterJoin
val result3: RDD[(Int, (Option[String], Option[Int]))] = rdd1.fullOuterJoin(rdd2)
//打印输出
println(result3.collect().toBuffer)
}

coalesce算子
1)coalesce(numPartition, shuffle=false):分区合并的意思。
2)numPartition:分区后的分区个数。
3)shuffle:此次重分区是否开启shuffle,决定当前的操作是宽(true)依赖还是窄(false)依赖。

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("wc").setMaster("local[*]")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val rdd = sc.parallelize(1 to 16,4)
//获取分区数
println(rdd.getNumPartitions)
//查看每个分区当中保存了哪些数据
rdd.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
//缩减分区
val rdd1: RDD[Int] = rdd.coalesce(3)
//获取分区数
println(rdd1.getNumPartitions)
//查看每个分区当中保存的数据变化
rdd1.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
//释放资源
sc.stop()
}

repartition(numPartitions)算子
根据分区数,从新通过网络随机洗牌所有数据。

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("wc").setMaster("local[*]")
val sc = new SparkContext(conf)
//设置控制台日志级别
sc.setLogLevel("WARN")
val rdd = sc.parallelize(1 to 16,4)
//获取分区数
println(rdd.getNumPartitions)
//查看每个分区当中保存了哪些数据
rdd.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
//缩减分区
val rdd1: RDD[Int] = rdd.repartition(3)
//获取分区数
println(rdd1.getNumPartitions)
//查看每个分区当中保存的数据变化
rdd1.mapPartitionsWithIndex((index,item)=>Iterator(index+":"+item.mkString(","))).foreach(println)
//释放资源
sc.stop()
}

sortBy(func,[ascending], [numTasks])算子
用func先对数据进行处理,按照处理后的数据比较结果排序。

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("demo").setMaster("local[*]")
val sc = new SparkContext(conf)
//设置控制台日志输出级别
sc.setLogLevel("WARN")
//加载数据
val rdd= sc.parallelize(List(("a",4),("c",2),("b",1)))
//默认是升序排序,指定false,转为倒叙输出
val rdd1: RDD[(String, Int)] = rdd.sortBy(_._2,false)
//收集结果,返回数组输出
println(rdd1.collect().toBuffer)
}

sortByKey([ascending],[numTasks])算子
在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD。

def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("demo").setMaster("local[*]")
val sc = new SparkContext(conf)
//设置控制台日志输出级别
sc.setLogLevel("WARN")
//加载数据
val rdd = sc.parallelize(Array((3,"aa"),(6,"cc"),(2,"bb"),(1,"dd")))
//默认按照key进行升序输出,加false,转为倒叙输出
val result: RDD[(Int, String)] = rdd.sortByKey(false)
//收集结果,返回数组输出
println(result.collect().toBuffer)
}

groupByKey算子
groupByKey(numPartition):[K, Iterable[V]]
按照key来进行分组,numPartition指的是分组之后的分区个数。
这是一个宽依赖操作,但是需要注意一点的是,groupByKey相比较reduceByKey而言,没有本地预聚合操作,显然其效率并没有reduceByKey效率高,在使用的时候如果可以,尽量使用reduceByKey等去代替groupByKey。

def groupByOps(sc: SparkContext): Unit = {
case class Student(id: Int, name:String, province: String)
val stuRDD = sc.parallelize(List(
Student(1, "张三", "安徽"),
Student(2, "李梦", "山东"),
Student(3, "王五", "甘肃"),
Student(4, "周七", "甘肃"),
Student(5, "Lucy", "黑吉辽"),
Student(10086, "魏八", "黑吉辽")
))
//val province2Infos: RDD[(String, Iterable[Student]] = stuRDD.groupBy(stu => stu.province)
val province2Infos: RDD[(String, Iterable[Student])] = stuRDD.map(stu => (stu.province, stu)).groupByKey()

province2Infos.foreach{case (province, stus) => {
println(s"省份:${province}, 学生信息:${stus.mkString(", ")}, 人数:${stus.size}")
}}
}
}

reduceByKey算子
reduceByKey((A1, A2) => A3)
前提不是对全量的数据集进行reduce操作,而是对每一个key所对应的所有的value进行reduce操作。

def reduceByKeyOps(sc: SparkContext): Unit = {
case class Student(id: Int, name:String, province: String)
val stuRDD = sc.parallelize(List(
Student(1, "张三", "安徽"),
Student(2, "李梦", "山东"),
Student(3, "王五", "甘肃"),
Student(4, "周七", "甘肃"),
Student(5, "Lucy", "黑吉辽"),
Student(10086, "魏八", "黑吉辽")
))
val ret = stuRDD.map(stu => (stu.province, 1)).reduceByKey((v1, v2) => v1 + v2)
ret.foreach{case (province, count) => {
println(s"province: ${province}, count: ${count}")
}}
}

foldByKey算子
foldByKey(zeroValue)((A1, A2) => A3),其作用和reduceByKey一样,唯一的区别就是zeroValue初始化值不一样,相当于在scala集合操作中的reduce和fold的区别。

def foldByKeyOps(sc: SparkContext): Unit = {
case class Student(id: Int, name:String, province: String)
val stuRDD = sc.parallelize(List(
Student(1, "张三", "安徽"),
Student(3, "王五", "甘肃"),
Student(5, "Lucy", "黑吉辽"),
Student(2, "李梦", "山东"),
Student(4, "周七", "甘肃"),
Student(10086, "魏八", "黑吉辽")
), 2).mapPartitionsWithIndex((index, partition) => {
val list = partition.toList
println(s"-->stuRDD的分区编号为<${index}>中的数据为:${list.mkString("[", ", ", "]")}")
list.toIterator
})
val ret = stuRDD.map(stu => (stu.province, 1)).foldByKey(0)((v1, v2) => v1 + v2)
ret.foreach{case (province, count) => {
println(s"province: ${province}, count: ${count}")
}}
}

aggregateByKey算子
combineByKey和aggregateByKey的区别就相当于reduceByKey和foldByKey。

def abk2rbk(sc: SparkContext): Unit = {
val array = sc.parallelize(Array(
"hello you",
"hello me",
"hello you",
"hello you",
"hello me",
"hello you"
), 2)
val pairs = array.flatMap(_.split("\\s+")).map((_, 1))
val ret = pairs.aggregateByKey(0)(_+_, _+_)
ret.foreach{case (key, count) => {
println(s"key: ${key}, count: ${count}")
}}
}

action行动算子操作
1)foreach算子:foreach主要功能,就是用来遍历RDD中的每一条纪录,其实现就是将map或者flatMap中的返回值变为Unit即可,即foreach(A => Unit)。
在上述transformation操作学习过程中,多次使用到了foreach算子,所以这里就跳过学习了。
2)count算子:统计该rdd中元素的个数。
val count = rdd.count()
println(“rdd的count个数为:” + count)
3)collect算子:字面意思就是收集,拉取的意思,该算子的含义就是将分布在集群中的各个partition中的数据拉回到driver中,进行统一的处理;但是这个算子有很大的风险存在,第一,driver内存压力很大,第二数据在网络中大规模的传输,效率很低;所以一般不建议使用,如果非要用,请先执行filter。

val arr = rdd.filter(_._2 > 2).collect()
arr.foreach(println)

4)take&first:返回该rdd中的前N个元素,如果该rdd的数据是有序的,那么take(n)就是TopN;而first是take(n)中比较特殊的一个take(1)。

val arr:Array[(String, Int)] = rdd.take(2)
arr.foreach(println)

val ret:(String, Int) = rdd.first()
println(ret)

5)takeOrdered(n):返回前几个的排序。

val arr:Array[(String, Int)] = rdd.takeOrdered(2)
arr.foreach(println)

6)reduce算子:需要清楚的是,reduce是一个action操作,reduceByKey是一个transformation。reduce对一个rdd执行聚合操作,并返回结果,结果是一个值。

//例子1
val rdd: RDD[Int] = sc.parallelize(1 to 5,2)
//聚合
val result: Int = rdd.reduce(_+_)
//打印输出
println(result)
//例子2
val rdd2 = sc.makeRDD(Array(("a",1),("a",3),("c",3),("d",5)))
//聚合
val result1= rdd2.reduce((x,y)=>(x._1 + y._1,x._2 + y._2))
//打印输出
println(result1)
需要注意一点的是,聚合前后的数据类型保持一致。
7)countByKey算子:统计key出现的次数。
val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
//统计相同key出现的次数
val result: collection.Map[Int, Long] = rdd.countByKey()
//打印输出
println(result)

8)saveAsXxx算子:

//saveAsTextFile
rdd.saveAsTextFile("file:/E:/data/out/")
//saveAsNewAPIHadoopFile
val path = "file:/E:/data/out1"
rr.saveAsNewAPIHadoopFile(path,
classOf[Text],
classOf[IntWritable],
classOf[TextOutputFormat[Text, IntWritable]])
9)foreachPartition算子:foreach写入写入数据库,但是极其不友好。
def saveInfoMySQL2(rdd: RDD[(String, Int)]): Unit = {
rdd.foreach{case (word, count) => {
Class.forName("com.mysql.jdbc.Driver")
val url = "jdbc:mysql://localhost:3306/test"
val connection = DriverManager.getConnection(url, "mark", "sorry")
val sql =
"""
|insert into wordcounts(word, `count`) Values(?, ?)
|""".stripMargin
val ps = connection.prepareStatement(sql)
ps.setString(1, word)
ps.setInt(2, count)
ps.execute()
ps.close()
connection.close()
}}
}
val rdd: RDD[(String, Int)] = sc.parallelize(List(("hadoop",2)))
save(rdd)

高效写入数据库:

def saveInfoMySQLByForeachPartition(rdd: RDD[(String, Int)]): Unit = {
rdd.foreachPartition(partition => {
//这是在partition内部,属于该partition的本地
Class.forName("com.mysql.jdbc.Driver")
val url = "jdbc:mysql://localhost:3306/test"
val connection = DriverManager.getConnection(url, "mark", "sorry")
val sql =
"""
|insert into wordcounts(word, `count`) Values(?, ?)
|""".stripMargin
val ps = connection.prepareStatement(sql)
partition.foreach{case (word, count) => {
ps.setString(1, word)
ps.setInt(2, count)
ps.execute()
}}
ps.close()
connection.close()
})
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/609396.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库干货:推荐一款非常好用的 SQL Server管理工具

目录 2.1 SQL 编码辅助 2.2 表设计器 2.3 数据库设计器 2.4 模式比较 2.5 文档生成工具 2.6 数据导出和数据导入 2.7 源代码控制 2.8 监控工具 2.9 索引管理器 2.10 T-SQL 调试器 2.11 单元测试 一、软件简介 dbForge Studio 2019-2022 for SQL Server是针对SQL Serv…

Codeforces Round 943 (Div. 3)----B题题解

本题是很显然的双指针算法&#xff0c;一直移动&#xff0c;直达不匹配为止 #include <iostream> #include <vector> #include <string> #include <algorithm> using namespace std;const int N 200010; int t,n,m; char a[N],b[N];int main(void) {…

【国产SSL】哪家SSL证书可以保证数据不出境,是在国内验签

随着网络安全的重视&#xff0c;网站安装SSL证书已经是标配了。但是为什么目前常见的SSL证书都是国外的&#xff1f;数据受国外掌控&#xff0c;安全吗&#xff1f;那么哪家国产品牌是可以保证数据不出境的呢&#xff1f; 为什么目前常见的SSL证书都是国外的&#xff1f; 原因…

AI图书推荐:给自媒体创作者的ChatGPT使用指南

你是否厌倦了花费数小时盯着空白屏幕&#xff0c;努力为你的内容想出新鲜点子&#xff1f;想要将你的写作提升到下一个水平&#xff1f;有了ChatGPT&#xff0c;你可以告别写作障碍、无休止的修订和浪费的时间。 在这本全面的指南中&#xff0c;你将学到关于ChatGPT你需要知道…

BigInteger和BigDecimal类

BigInteger 和 BigDecimal 介绍 应用场景 BigInteger适合保存比较大的整型BigDecimal适合保存精度更高的浮点型&#xff08;小数&#xff09; BigInteger 和 BigDecimal 常见方法 1&#xff0c;add 加2&#xff0c;subtract 减3&#xff0c;multiply 乘4&#xff0c;divide…

2024年人工智能威胁态势报告:有关AI系统及AI应用的安全风险与安全防护全景

HiddenLayer公司最新发布的《2024年AI威胁场景报告》中&#xff0c;研究人员阐明了AI相关漏洞及其对组织的影响&#xff0c;并为应对这些挑战的IT安全和数据科学领导者提供了指导建议。最后&#xff0c;报告还揭示了各种形式的AI安全控制的前沿进展。 关键数据 平均而言&#x…

1. 介绍 Matplotlib

目录 1. Matplotlib 介绍 2. Matplotlib 安装介绍 3. Matplotlib 使用介绍 本专栏想分享一下最近学到的深度学习知识&#xff0c;前期需要一些 Python 知识和数据分析知识&#xff0c;如果有同学没有了解&#xff0c;请先看下面两个专栏&#xff0c;谢谢&#xff01; Pytho…

Ubuntu 网卡启动及配置

文章目录 问题分析查看网卡信息启动网卡 配置网卡应用更改 参考 问题分析 打开虚拟机后发现没有网卡网络。 查看网卡信息 sudo ip link set ens33 up得到本机的所有网卡信息&#xff0c;例如我这边网卡为ens33 启动网卡 启动网卡后发现依然网卡没有IP地址。 配置网卡 u…

【异常检测】新版异常检测库anomalib的使用

every blog every motto: There’s only one corner of the universe you can be sure of improving, and that’s your own self. https://blog.csdn.net/weixin_39190382?spm1010.2135.3001.5343 0. 前言 异常检测库anomalib的使用 1. 前提 1.1 数据组织形式 说明&#…

畅享清凉乐趣,气膜水上乐园的五大优点—轻空间

夏日的到来&#xff0c;让我们一同探索气膜水上乐园所带来的独特魅力。这里有着不同于传统水上乐园的五大优点&#xff0c;让您尽情享受清凉乐趣&#xff0c;感受畅游的无限畅快&#xff01; 1. 全年无休&#xff0c;尽享水上乐趣 气膜水上乐园的特殊建造材料和创新设计&#x…

qml 调用 C++函数

1、新建一个类 1)继承自QObject类&#xff08;记得添加QObject头文件&#xff09; 2)增加Q_OBJECT宏 3&#xff09;在需要调用的类成员函数前添加Q_INVOKEABLE声明 注意1&#xff1a;如果没有2&#xff09;和3&#xff09;&#xff0c;运行后提示函数类型错误 注意2&#…

CTF数据安全大赛crypto题目解题过程

CTF-Crypto加密题目内容 下面是一个Base64加密的密文 bXNobnszODdoajM3MzM1NzExMzQxMmo4MGg0bDVoMDYzNDQzNH0原文链接&#xff1a; 数据安全大赛CTF-Crypto题目 - 红客网-网络安全与渗透技术 我们用Python写一个解密脚本&#xff1a; import base64 import time #base64加密…

外贸人绝不能错过的欧洲市场如何开发?

欧洲市场作为世界上消费较大且较高的市场之一&#xff0c;容量大且接纳性强&#xff0c;不少外贸企业都希望在欧洲市场上掘金。 今天&#xff0c;我们就一起来看外贸人绝不能错过的欧洲市场如何开发&#xff1f;现在的欧洲还有哪些机会&#xff1f; 一、欧洲基本情况及市场特点…

各种依赖注入和分层解耦

分层解耦 三层架构 controller:控制层&#xff0c;接收前端发送的请求&#xff0c;对请求进行处理&#xff0c;并响应数据 service:业务逻辑层&#xff0c;处理具体业务的逻辑 dao:数据访问&#xff0c;负责数据访问操作&#xff0c;包括数据的增、删、改、查 流程为&…

wsl2安装rancher并导入和创建k8s集群

环境准备 安装wsl2点击此文]ubuntu20.04安装docker 点击此文,安装完成后docker镜像仓库改成阿里云镜像加速地址.如果不熟请点击此文 docker 安装rancher 启动wsl,根据官方文档以root身份执行 sudo docker run -d --restartunless-stopped -p 80:80 -p 443:443 --privileged …

位图转矢量图在线Ai神器,让你的图片无限放大不失真的秘密武器,重点免费、免费、免费

&#x1f4bb;开局附上神器地址&#xff1a;Convert PNG, JPG files to SVG vectors online - svg.tmttool.com 这边结合自己的使用场景简单做下使用教程&#x1f447;商业场景中经常需要对Ai生成的插画图进行二次创作&#xff0c;了解Ai做图的小伙伴就知道生成的图分辨率有限&…

2W 3KVDC 隔离 稳压单输出 DC/DC 电源模块——TPB 系列

TPB系列的输出带稳压和短路保护&#xff0c;特别适合于对输出电压精度和输出纹波噪声有要求的场合&#xff0c;完全兼容TPR和TPG的安装要求。

实现网站HTTPS访问:全面指南

在当今网络安全至关重要的时代&#xff0c;HTTPS已经成为网站安全的基本标准。HTTPS&#xff08;超文本传输安全协议&#xff09;通过在HTTP协议基础上加入SSL/TLS加密层&#xff0c;确保了数据在用户浏览器和服务器之间的传输是加密的&#xff0c;有效防止数据被窃取或篡改&am…

河北公司推行精益管理咨询时需要注意哪些问题?

近年来&#xff0c;越来越多的河北公司开始关注并推行精益管理咨询&#xff0c;以期通过优化流程、降低成本、提高效率来获得竞争优势。然而&#xff0c;在实施过程中&#xff0c;公司需要注意一系列问题&#xff0c;以确保精益管理咨询能够顺利推进并取得预期效果。天行健精益…

社交媒体数据恢复:海鸥

在使用社交软件的过程中&#xff0c;难免会遇到一些问题&#xff0c;例如误删聊天记录、丢失重要信息等。对于海鸥社交软件的用户来说&#xff0c;了解如何恢复数据是非常重要的。本篇将为您提供一份详细的海鸥社交软件数据恢复教程。 一、备份与预防措施 在遇到数据丢失的问…
最新文章