网络传输层

目录

  • 传输层
  • 再谈端口号
    • 端口号范围划分
    • 认识知名端口号
    • netstat
    • pidof
  • UDP协议
    • UDP协议端格式
    • UDP的特点
    • 面向数据报
    • UDP的缓冲区
    • UDP使用注意事项
    • 使用udp协议 的应用层协议
    • 其它
  • TCP协议
    • TCP协议段格式
  • 如何理解链接
  • 如何理解三次握手
  • 如何理解四次挥手
    • 概念
    • TIME_WAIT/CLOSE_WAIT
  • TCP策略
    • 确认应答
    • 超时重传
    • 连接管理机制
    • 理解TIME_WAIT状态
    • 滑动窗口
    • 流量控制
    • 拥塞控制
    • 延迟应答
    • 捎带应答
    • 面向字节流
  • 问题
    • 粘包问题
    • TCP异常情况
  • TCP小结
  • TCP/UDP对比
  • 用UDP实现可靠传输
  • 理解 listen 的第二个参数

传输层

  • 负责数据能够从发送端传输接收端.
  • 传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP和用户数据报协议UDP

再谈端口号

  • 端口号(Port)标识了一个主机上进行通信的不同的应用程序;
  • 不是所有的进程都是要提供网络服务的
  • 不使用进程PID作为端口号是为了将网络服务与进程解耦
  • 一个进程可以bind多个端口号,但是一个端口号不可以被多个进程bind
  • 0S底层是用哈希存放端口号与进程的关系的,key:存端口号,value:存对应的PCB结构体地址通过PCB就知道那个进程,内容要写到sockfd文件描述符对应的文件里面

在这里插入图片描述
在TCP/IP协议中, 用 “源IP”, “源端口号”, “目的IP”, “目的端口号”, “协议号” 这样一个五元组来标识一个通信(可以通过netstat -n查看);
在这里插入图片描述

端口号范围划分

  • 0 - 1023: 知名端口号, HTTP, FTP, SSH等这些广为使用的应用层协议, 他们的端口号都是固定的.
  • 1024 - 65535: 操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作系统从这个范围分配的.

认识知名端口号

  • ssh服务器, 使用22端口
  • ftp服务器, 使用21端口
  • telnet服务器, 使用23端口
  • http服务器, 使用80端口
  • https服务器, 使用443

注意:自己写一个程序使用端口号时, 要避开这些知名端口号.
执行下面的命令, 可以看到知名端口号: cat /etc/services

netstat

netstat是一个用来查看网络状态的重要工具.

  • n 拒绝显示别名,能显示数字的全部转化成数字
  • l 仅列出有在 Listen (监听) 的服務状态
  • p 显示建立相关链接的程序名
  • t (tcp)仅显示tcp相关选项
  • u (udp)仅显示udp相关选项
  • a (all)显示所有选项,默认不显示LISTEN相关

pidof

在查看服务器的进程id时非常方便.

  • pidof [进程名]
  • 通过进程名, 查看进程id

UDP协议

UDP协议端格式

在这里插入图片描述

  • 16位UDP长度, 表示整个数据报(UDP首部+UDP数据)的最大长度;
  • 如果校验和出错, 就会直接丢弃;

UDP的特点

  • 无连接: 知道对端的IP和端口号就直接进行传输, 不需要建立连接;
  • 不可靠: 没有确认机制, 没有重传机制; 如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层返回任何错误信息;
  • 面向数据报: 不能够灵活的控制读写数据的次数和数量;

面向数据报

应用层交给UDP多长的报文, UDP原样发送, 既不会拆分, 也不会合并;
用UDP传输100个字节的数据:

  • 如果发送端调用一次sendto, 发送100个字节, 那么接收端也必须调用对应的一次recvfrom, 接收100个字节; 而不能循环调用10次recvfrom, 每次接收10个字节;

UDP的缓冲区

  • UDP没有真正意义上的 发送缓冲区. 调用sendto会直接交给内核, 由内核将数据传给网络层协议进行后续的传输动作;
  • UDP具有接收缓冲区. 但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致; 如果缓冲区满了, 再到达的UDP数据就会被丢弃;
  • UDP的socket既能读, 也能写, 是 全双工

UDP使用注意事项

  • 我们注意到, UDP协议首部中有一个16位的最大长度. 也就是说一个UDP能传输的数据最大长度是64K(包含UDP首部).
  • 然而64K在当今的互联网环境下, 是一个非常小的数字.
  • 如果我们需要传输的数据超过64K, 就需要在应用层手动的分包, 多次发送, 并在接收端手动拼装;

使用udp协议 的应用层协议

  • NFS: 网络文件系统
  • TFTP: 简单文件传输协议
  • DHCP: 动态主机配置协议(上网时路由器会给我们分配一个ip地址,断开时会收回这个ip地址)
  • BOOTP: 启动协议(用于无盘设备启动)
  • DNS: 域名解析协议

其它

在这里插入图片描述

TCP协议

TCP全称为 "传输控制协议“ – 对数据的传输进行一个详细的控制

TCP协议段格式

在这里插入图片描述

  • 源/目的端口号: 表示数据是从哪个进程来, 到哪个进程去;

  • 4位TCP报头长度: 表示该TCP头部有多少个32位bit(有多少个4字节); 所以TCP头部最大长度是15 * 4 = 60

  • 6位标志位:
    URG: 紧急指针是否有效
    ACK: 确认号是否有效
    PSH: 提示接收端应用程序立刻从TCP缓冲区把数据读走
    RST: 对方要求重新建立连接; 我们把携带RST标识的称为复位报文段
    SYN: 请求建立连接; 我们把携带SYN标识的称为同步报文段

  • FIN: 通知对方, 本端要关闭了, 我们称携带FIN标识的为结束报文段

  • 16位校验和: 发送端填充, CRC校验. 接收端校验不通过, 则认为数据有问题. 此处的检验和不光包含TCP首部, 也包含TCP数据部分.

  • 16位紧急指针: 标识哪部分数据是紧急数据;

  • 40字节头部选项: 暂时忽略;

在这里插入图片描述

如何理解链接

在这里插入图片描述

如何理解三次握手

在这里插入图片描述

如何理解四次挥手

概念

在这里插入图片描述

TIME_WAIT/CLOSE_WAIT

在这里插入图片描述
---------------------------------------------------------------------------------------------------------------------------------------------------
在这里插入图片描述

TCP策略

确认应答

在这里插入图片描述
每一个ACK都带有对应的确认序列号, 意思是告诉发送者, 我已经收到了哪些数据; 下一次你从哪里开始发.

超时重传

在这里插入图片描述

  • 主机A发送数据给B之后, 可能因为网络拥堵等原因, 数据无法到达主机B;
  • 如果主机A在一个特定时间间隔内没有收到B发来的确认应答, 就会进行重发

但是, 主机A未收到B发来的确认应答, 也可能是因为ACK丢失了;
在这里插入图片描述

  • 因此主机B会收到很多重复数据. 那么TCP协议需要能够识别出那些包是重复的包, 并且把重复的丢弃掉.这时候我们可以利用前面提到的序列号, 就可以很容易做到去重的效果.

如果超时的时间如何确定?

  • 最理想的情况下, 找到一个最小的时间, 保证 “确认应答一定能在这个时间内返回”.
  • 但是这个时间的长短, 随着网络环境的不同, 是有差异的.
  • 如果超时时间设的太长, 会影响整体的重传效率;
  • 如果超时时间设的太短, 有可能会频繁发送重复的包;
    TCP为了保证无论在任何环境下都能比较高性能的通信, 因此会动态计算这个最大超时时间.
  • Linux中(BSD Unix和Windows也是如此), 超时以500ms为一个单位进行控制, 每次判定超时重发的超时时间都是500ms的整数倍.
  • 如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传.
  • 如果仍然得不到应答, 等待 4*500ms 进行重传. 依次类推, 以指数形式递增.
  • 累计到一定的重传次数, TCP认为网络或者对端主机出现异常, 强制关闭连接.

连接管理机制

在正常情况下, TCP要经过三次握手建立连接, 四次挥手断开连接 – 看前面理解
在这里插入图片描述
服务端状态转化:

  • [CLOSED -> LISTEN] 服务器端调用listen后进入LISTEN状态, 等待客户端连接;
  • [LISTEN -> SYN_RCVD] 一旦监听到连接请求(同步报文段), 就将该连接放入内核等待队列中, 并向客户端发送SYN确认报文
  • [SYN_RCVD -> ESTABLISHED] 服务端一旦收到客户端的确认报文, 就进入ESTABLISHED状态, 可以进行读写数据了.
  • [ESTABLISHED -> CLOSE_WAIT] 当客户端主动关闭连接(调用close), 服务器会收到结束报文段, 服务器返回确认报文段并进入CLOSE_WAIT;
  • [CLOSE_WAIT -> LAST_ACK] 进入CLOSE_WAIT后说明服务器准备关闭连接(需要处理完之前的数据); 当服务器真正调用close关闭连接时, 会向客户端发送FIN, 此时服务器进入LAST_ACK状态, 等待最后一个ACK到来(这个ACK是客户端确认收到了FIN)
  • [LAST_ACK -> CLOSED] 服务器收到了对FIN的ACK, 彻底关闭连接.
    客户端状态转化:
  • [CLOSED -> SYN_SENT] 客户端调用connect, 发送同步报文段;
  • [SYN_SENT -> ESTABLISHED] connect调用成功, 则进入ESTABLISHED状态, 开始读写数据;
  • [ESTABLISHED -> FIN_WAIT_1] 客户端主动调用close时, 向服务器发送结束报文段, 同时进入 FIN_WAIT_1;
  • [FIN_WAIT_1 -> FIN_WAIT_2] 客户端收到服务器对结束报文段的确认, 则进入FIN_WAIT_2, 开始等待服务器的结束报文段;
  • [FIN_WAIT_2 -> TIME_WAIT] 客户端收到服务器发来的结束报文段, 进入TIME_WAIT, 并发出LAST_ACK;
  • [TIME_WAIT -> CLOSED] 客户端要等待一个2MSL(Max Segment Life, 报文最大生存时间)的时间, 才会进入CLOSED状态.

理解TIME_WAIT状态

在这里插入图片描述

滑动窗口

讨论了确认应答策略, 对每一个发送的数据段, 都要给一个ACK确认应答. 收到ACK后再发送下一个数据段.这样做有一个比较大的缺点, 就是性能较差. 尤其是数据往返的时间较长的时候;这样一发一收的方式性能较低, 那么我们一次发送多条数据, 就可以大大的提高性能(其实是将多个段的等待时间重叠在一起了).
在这里插入图片描述
窗口大小指的是无需等待确认应答而可以继续发送数据的最大值. 上图的窗口大小就是4000个字节(四个段).
发送前四个段的时候, 不需要等待任何ACK, 直接发送;
收到第一个ACK后, 滑动窗口向后移动, 继续发送第五个段的数据; 依次类推;
操作系统内核为了维护这个滑动窗口, 需要开辟 发送缓冲区 来记录当前还有哪些数据没有应答; 只有确认应答过的数据, 才能从缓冲区删掉;
窗口越大, 则网络的吞吐率就越高;
在这里插入图片描述
那么如果出现了丢包, 如何进行重传? 这里分两种情况讨论.
情况一: 数据包已经抵达, ACK被丢了. --》 这种情况下, 部分ACK丢了并不要紧, 因为可以通过后续的ACK进行确认;
在这里插入图片描述
情况二: 数据包就直接丢了.
在这里插入图片描述

  • 当某一段报文段丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 "我想要的是 1001"一样;
  • 如果发送端主机连续三次收到了同样一个 “1001” 这样的应答, 就会将对应的数据 1001 - 2000 重新发送;
  • 这个时候接收端收到了 1001 之后, 再次返回的ACK就是7001了(因为2001 - 7000)接收端其实之前就已经收到了, 被放到了接收端操作系统内核的接收缓冲区中;
  • 这种机制被称为 “高速重发控制”(也叫 “快重传”).

深入理解:
在这里插入图片描述

流量控制

接收端处理数据的速度是有限的. 如果发送端发的太快, 导致接收端的缓冲区被打满, 这个时候如果发送端继续发送,就会造成丢包, 继而引起丢包重传等等一系列连锁反应.因此TCP支持根据接收端的处理能力, 来决定发送端的发送速度. 这个机制就叫做流量控。

  • 接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 “窗口大小” 字段, 通过ACK端通知发送端;
  • 窗口大小字段越大, 说明网络的吞吐量越高;
  • 接收端一旦发现自己的缓冲区快满了, 就会将窗口大小设置成一个更小的值通知给发送端;
  • 发送端接受到这个窗口之后, 就会减慢自己的发送速度;
  • 如果接收端缓冲区满了, 就会将窗口置为0; 这时发送方不再发送数据, 但是需要定期发送一个窗口探测数据段, 使接收端把窗口大小告诉发送端.
    在这里插入图片描述
    接收端如何把窗口大小告诉发送端呢? 回忆我们的TCP首部中, 有一个16位窗口字段, 就是存放了窗口大小信息;
    那么问题来了, 16位数字最大表示65535, 那么TCP窗口最大就是65535字节么?
    实际上, TCP首部40字节选项中还包含了一个窗口扩大因子M, 实际窗口大小是 窗口字段的值左移 M 位;

拥塞控制

在这里插入图片描述

虽然TCP有了滑动窗口这个大杀器, 能够高效可靠的发送大量的数据. 但是如果在刚开始阶段就发送大量的数据, 仍
然可能引发问题.
因为网络上有很多的计算机, 可能当前的网络状态就已经比较拥堵. 在不清楚当前网络状态下, 贸然发送大量的数据,
是很有可能引起雪上加霜的
TCP引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;

  • 此处引入一个概念程为拥塞窗口
  • 发送开始的时候, 定义拥塞窗口大小为1;
  • 每次收到一个ACK应答, 拥塞窗口加1;
  • 每次发送数据包的时候, 将拥塞窗口和接收端主机反馈的窗口大小做比较, 取较小的值作为实际发送的窗口;
  • 拥塞窗口增长速度, 是指数级别的. “慢启动” 只是指初使时慢, 但是增长速度非常快.
  • 此处引入一个叫做慢启动的阈值
  • 当拥塞窗口超过这个阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长
    在这里插入图片描述

在这里插入图片描述

  • 当TCP开始启动的时候, 慢启动阈值等于窗口最大值;
  • 在每次超时重发的时候, 慢启动阈值会变成原来的一半, 同时拥塞窗口置回1;

少量的丢包, 我们仅仅是触发超时重传; 大量的丢包, 我们就认为网络拥塞;
当TCP通信开始后, 网络吞吐量会逐渐上升; 随着网络发生拥堵, 吞吐量会立刻下降;
拥塞控制, 归根结底是TCP协议想尽可能快的把数据传输给对方, 但是又要避免给网络造成太大压力的折中方案.

延迟应答

如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小.

  • 假设接收端缓冲区为1M. 一次收到了500K的数据; 如果立刻应答, 返回的窗口就是500K;
  • 但实际上可能处理端处理的速度很快, 10ms之内就把500K数据从缓冲区消费掉了;
  • 在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;
  • 如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;

要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么? 肯定也不是;

  • 数量限制: 每隔N个包就应答一次;
  • 时间限制: 超过最大延迟时间就应答一次;

数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;

综上:不给对方立即应答,而是等一等再应答,可以保证给对方同步–个较大的接受缓冲区剩余空间的大小

捎带应答

1、什么是捎带应答?

虽然有延迟应答,但是客户端和服务器在应用层还是还是”一发一收”,此时就会导致数据传输效率低下,捎带应答就是接收端在给发送端发送数据的时候,捎带着向发送端发去确认应答,应答的内容是接收端已经收到发送端发送的数据。

2、使用捎带应答之前

客户端:你好吗?

服务器:我收到你发的消息了(即:接收端的ACK应答)

服务器:我很好

3、使用捎带应答

客户端:你好吗?

服务器:我很好(接收端给发送端发送的数据),我也收到你发的消息了(即:接收端的ACK应答)
在这里插入图片描述

使用捎带应答后,ACK就可以搭顺风车了,在接收端给发送端发送数据的时候,ACK就可以捎带着给发送端发送过去。

面向字节流

创建一个TCP的socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区;

  • 调用write时, 数据会先写入发送缓冲区中;
  • 如果发送的字节数太长, 会被拆分成多个TCP的数据包发出;
  • 如果发送的字节数太短, 就会先在缓冲区里等待, 等到缓冲区长度差不多了, 或者其他合适的时机发送出去;
  • 接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区;
  • 然后应用程序可以调用read从接收缓冲区拿数据;
  • 另一方面, TCP的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工

由于缓冲区的存在, TCP程序的读和写不需要一一匹配, 例如:

  • 写100个字节数据时, 可以调用一次write写100个字节, 也可以调用100次write, 每次写一个字节;
  • 读100个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100个字节, 也可以一次read一个字节, 重复100次;

问题

粘包问题

  • 首先要明确, 粘包问题中的 “包” , 是指的应用层的数据包.
  • 在TCP的协议头中, 没有如同UDP一样的 “报文长度” 这样的字段, 但是有一个序号这样的字段.
  • 站在传输层的角度, TCP是一个一个报文过来的. 按照序号排好序放在缓冲区中.
  • 站在应用层的角度, 看到的只是一串连续的字节数据.
  • 那么应用程序看到了这么一连串的字节数据, 就不知道从哪个部分开始到哪个部分, 是一个完整的应用层数据包.

那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.

  • 对于定长的包, 保证每次都按固定大小读取即可
  • 对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;
  • 对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔符不和正文冲突即可);

TCP异常情况

  • 进程终止: 进程终止会释放文件描述符, 仍然可以发送FIN. 和正常关闭没有什么区别.
  • 机器重启: 和进程终止的情况相同.
  • 机器掉电/网线断开: 接收端认为连接还在, 一旦接收端有写入操作, 接收端发现连接已经不在了, 就会进行reset. 即使没有写入操作, TCP自己也内置了一个保活定时器, 会定期询问对方是否还在. 如果对方不在, 也会把连接释放.
  • 另外, 应用层的某些协议, 也有一些这样的检测机制. 例如HTTP长连接中, 也会定期检测对方的状态. 例如QQ, 在QQ断线之后, 也会定期尝试重新连接

TCP小结

为什么TCP这么复杂? 因为要保证可靠性, 同时又尽可能的提高性能.
可靠性:

  • 校验和
  • 序列号(按序到达)
  • 确认应答
  • 超时重发
  • 连接管理
  • 流量控制
  • 拥塞控制

提高性能:

  • 滑动窗口
  • 快速重传
  • 延迟应答
  • 捎带应答

其他:

  • 定时器(超时重传定时器, 保活定时器, TIME_WAIT定时器等)

基于TCP应用层协议

  • HTTP
  • HTTPS
  • SSH
  • Telnet
  • FTP
  • SMTP

TCP/UDP对比

TCP是可靠连接, 那么是不是TCP一定就优于UDP呢? TCP和UDP之间的优点和缺点, 不能简单, 绝对的进行比较

  • TCP用于可靠传输的情况, 应用于文件传输, 重要状态更新等场景;
  • UDP用于对高速传输和实时性要求较高的通信领域, 例如, 早期的QQ, 视频传输等. 另外UDP可以用于广播;

归根结底, TCP和UDP都是程序员的工具, 什么时机用, 具体怎么用, 还是要根据具体的需求场景去判定.

用UDP实现可靠传输

参考TCP,根据场景引入合适的策略,比如:

  • 引入序列号, 保证数据顺序;
  • 引入确认应答, 确保对端收到了数据;
  • 引入超时重传, 如果隔一段时间没有应答, 就重发数据;
  • 等等,根据场景做出添加

理解 listen 的第二个参数

对于服务器, listen 的第二个参数设置为 1, 并且不调用 accept
此时启动 3 个客户端同时连接服务器, 用 netstat 查看服务器状态, 发现服务器对于第三个连接的状态存在问题了
在这里插入图片描述
客户端状态正常, 但是服务器端出现了 SYN_RECV 状态, 而不是 ESTABLISHED 状态
这是因为, Linux内核协议栈为一个tcp连接管理使用两个队列:

  1. 半链接队列(用来保存处于SYN_SENT和SYN_RECV状态的请求)
  2. 全连接队列(accpetd队列)(用来保存处于established状态,但是应用层没有调用accept取走的请求)
    而全连接队列的长度会受到 listen 第二个参数的影响.

全连接队列满了的时候, 就无法继续让当前连接的状态进入 established 状态了.
这个队列的长度通过上述实验可知, 是 listen 的第二个参数 + 1.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/6211.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【wps】【毕业论文】三线表的绘制

目录 一、三线表 二、制作步骤 (1)点击“插入”——点击“表格”创建一个表格 (2)选中整个表格——鼠标右键选择“边框和底纹”,“表格属性”再点击“边框和底纹”——点击“自定义”——选择表格的边的宽度——如图…

北京筑龙智能寻源 |助力企业一站式智能采购,降本增效

智能寻源——精准匹配,让采购更高效 智能寻源系统是北京筑龙为采购人搭建的一款全链路高效协同的采购寻源和供应商管理平台。助力采购人快速完成采购计划,提升采购效率,降低采购风险。 基于智能寻源系统,将全面打通供应商数据壁…

VR数字政务,VR全景技术,探索数字化治理新路径

近年来,随着虚拟现实(VR)技术的不断发展,VR数字政务也逐渐成为行政数字化转型的重要组成部分。VR数字政务可以为行政部门提供全新的数字化解决方案,使行政部门的工作更加高效、便捷和安全。 一、VR数字政务的定义和概述…

ABBYY FineReader PDF15下载安装教程

刚刚,老板给我一堆扫描文件(图片和pdf文件),拿不到源文件,让我把客户发的扫描文件搞成word文档,密密麻麻,这些文件100多页,这要手工敲能把手敲费。 这时候,让我想到了这…

小白的git入门教程(三)

书接上文,我们讲到如何进行版本日志回退,根据这个,我们可以返回到任意状态 今天让我们接着讲完git的基本指令操作教程以及其余分支 删除文件操作 前提:要被删除的文件已经存储在本地库中 这里我们可以创建一个文件(待…

ActiViz.NET 9.2.2023 Crack

适用于 .Net C# 和 Unity 的 3D 可视化库 释放可视化工具包的强大功能,在 C#、.Net 和 Unity 软件中为您的 3D 内容服务。 ActiViz 允许您轻松地将 3D 可视化集成到您的应用程序中。 Kitware 围绕 ActiViz 和 3D 应用程序提供支持和自定义开发 活动可视化功能 C…

【Java代码审计】表达式注入

1 前置知识 1.1 EL表达式 EL表达式主要功能: 获取数据:可以从JSP四大作用域中获取数据执行运算:执行一些关系运算,逻辑运算,算术运算获取web开发常用对象:通过内置 的11个隐式对象获取想要的数据调用jav…

STL容器之initializer_list与set

STL容器之initializer_list与setinitializer_list案例二(实现n个数的加法)set单集合有序性唯一性删除元素多重集合less与greater自定义类型initializer_list initializer_list创建的对象,初始值可以有很多个,像vector 一样 想多少…

第05章_排序与分页

第05章_排序与分页 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生,目前在…

SPI、I2C、CAN通信的简单介绍和笔记

标题中的三种通信方式(协议)是比较常见的一些通信协议,对于它们有一定的了解对于我们学习嵌入式单片机的学习有着非常重要的作用。于是我们对此有一些信息给到各位读者,这也是笔者自己巩固知识点的方式。如果觉得有帮到各位&#…

551、Elasticsearch详细入门教程系列 -【分布式全文搜索引擎 Elasticsearch(二)】 2023.04.04

目录一、Elasticsearch创建/查看/删除索引、创建/查看/修改/删除文档、映射关系1.1 Elasticsearch中的数据格式1.2 索引操作1.2.1 创建索引1.2.2 查看指定索引1.2.3 查看全部索引1.2.4 删除索引1.3 文档操作1.3.1 创建文档1.3.2 查看单个文档:主键查询1.3.3 查看所有…

不敲代码用ChatGPT开发一个App

先说下背景,有一天我在想 ChatGPT 对于成熟的开发者来说已经是一个非常靠谱的助手了,身边也确实有很多同事把它作为一个离不开的助理担当。 但是如果我只是略微懂一点前端知识的新人,了解 HTML、CSS、JS 相关的知识,想开发一个安…

什么是UEFI签名认证?UEFI签名有什么好处?

为了防御恶意软件攻击,目前市面上所有电脑设备启动时默认开启安全启动(Secure Boot)模式。安全启动(Secure Boot)是UEFI扩展协议定义的安全标准,可以确保设备只使用OEM厂商信任的软件启动。UEFI签名认证就是对运行在 UEFI 系统下的 efi 驱动和通过 UEFI …

第10章_创建和管理表

第10章_创建和管理表 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生,目前…

OpenCloudOS 9.0发布,腾讯闯入底层基础软件“深水区”

3月22日,腾讯发布了2022第四季度及全年业绩,ToB业务成为腾讯的核心引擎。与此同时,ToB的腾讯在近年来持续加码自研投入,提升底层技术实力,2022年研发投入达到614亿元,2018年至今在研发上的投入已经超过2056…

Mockito单测之道

Mockito单测之道 去年写过一篇《TestNG单元测试实战》文章,严格来讲算集成测试。 没看的小伙伴可直接看本篇即可,本质是单元测试框架不同,写法不一样。 单测定义 单元测试定义: 对软件中最小可测单元进行验证,可理解…

【数据结构】链表练习题(2)

链表练习题1.相交链表(LeetCode160)2.环形链表(LeetCode141)3.环形链表Ⅱ(LeetCode142)1.相交链表(LeetCode160) 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。题目数据 保…

spring注解的使用

Spring的一个核心功能是IOC,就是将Bean初始化加载到容器中,Bean是如何加载到容器的,可以使用Spring注解方式或者Spring XML配置方式。 Spring注解方式减少了配置文件内容,更加便于管理,并且使用注解可以大大提高了开发…

你看这个spring的aop它又大又宽

aop🚓AOP 分类AspectJ | 高级但是难用Spring AOP | 易用但仅支持方法aop 原理明月几时有,把酒问青天。——唐代李白《将进酒》 AOP 分类 在 Spring Boot 中,AOP 的实现主要有以下几种: 基于 AspectJ 的 AOP:这是一种基…

数据结构——红黑树

目录 概念 性质 结点的定义 插入 调整 当p是g的左孩子时 当p为g的右孩子时 插入完整代码 红黑树的检测 红黑树完整代码(包括测试数据) 概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色&…
最新文章