【kubernetes】Pod进阶

目录

资源限制

官网示例:

Pod 和 容器 的资源请求和限制:

CPU 资源单位

内存 资源单位 

示例1:

示例2:

重启策略(restartPolicy)

1、Always

2、OnFailure

3、Never

示例

容器进入error状态不会进行重启

健康检查:又称为探针(Probe) 

探针的三种规则:

●livenessProbe 

●readinessProbe

●startupProbe(这个1.17版本增加的)

Probe支持三种检查方法:

●exec

●tcpSocket

●httpGet

每次探测都将获得以下三种结果之一

官网示例:

示例1:exec方式

示例2:httpGet方式

示例3:tcpSocket方式

示例4:就绪检测

readiness探测失败,无法进入READY状态

示例5:就绪检测2

readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址

启动、退出动作

在 node02 节点上查看

删除 pod 后,再在 node02 节点上查看


资源限制

当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

当为 Pod 中的容器指定了 request 资源时,代表容器运行所需的最小资源量,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。

官网示例:

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Pod 和 容器 的资源请求和限制:

spec.containers[].resources.requests.cpu            //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory         //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu              //定义 cpu 的资源上限 
spec.containers[].resources.limits.memory           //定义内存的资源上限

CPU 资源单位

CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。 

内存 资源单位 

内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。

示例1:

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"


此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。

示例2:

vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "abc123"
    resources:
      requests:
        memory: "512Mi"
        cpu: "0.5"
      limits:
        memory: "1Gi"
        cpu: "1"
kubectl apply -f pod2.yaml
kubectl describe pod frontend
kubectl get pods -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP           NODE     NOMINATED NODE   READINESS GATES
frontend   2/2     Running   5          15m   10.244.2.4   node02   <none>           <none>
kubectl describe nodes node02                #由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%
Namespace                  Name                           CPU Requests  CPU Limits  Memory Requests  Memory Limits  AGE
  ---------                  ----                           ------------  ----------  ---------------  -------------  ---
  default                    frontend                       500m (25%)    1 (50%)     128Mi (3%)       256Mi (6%)     16m
  kube-system                kube-flannel-ds-amd64-f4pbp    100m (5%)     100m (5%)   50Mi (1%)        50Mi (1%)      19h
  kube-system                kube-proxy-pj4wp               0 (0%)        0 (0%)      0 (0%)           0 (0%)         19h
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests    Limits
  --------           --------    ------
  cpu                600m (30%)  1100m (55%)
  memory             178Mi (4%)  306Mi (7%)
  ephemeral-storage  0 (0%)      0 (0%)

重启策略(restartPolicy)

当 Pod 中的容器退出时通过节点上的 kubelet 重启容器。适用于 Pod 中的所有容器。

1、Always

当容器终止退出后,总是重启容器,默认策略

2、OnFailure

当容器异常退出(退出状态码非0)时,重启容器;正常退出则不重启容器

3、Never

当容器终止退出,从不重启容器。
注意:K8S 中不支持重启 Pod 资源,只有删除重建。
      在用 yaml 方式创建 Deployment 和 StatefulSet 类型时,restartPolicy 只能是 Always,kubectl run 创建 Pod 可以选择 Always,OnFailure,Never 三种策略

kubectl edit deployment nginx-deployment
......
  restartPolicy: Always

示例

vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: foo
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 30; exit 3


kubectl apply -f pod3.yaml

查看Pod状态,等容器启动后30秒后执行exit退出进程进入error状态,就会重启次数加1

kubectl get pods
NAME                              READY   STATUS             RESTARTS   AGE
foo                               1/1     Running            1          50s
kubectl delete -f pod3.yaml
vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
  name: foo
spec:
  containers:
  - name: busybox
    image: busybox
    args:
    - /bin/sh
    - -c
    - sleep 30; exit 3
  restartPolicy: Never
#注意:跟container同一个级别

kubectl apply -f pod3.yaml

容器进入error状态不会进行重启

kubectl get pods -w

健康检查:又称为探针(Probe) 

探针是由kubelet对容器执行的定期诊断。

探针的三种规则:

●livenessProbe 

判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

●readinessProbe

判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service endpoints 中剔除删除该Pod的IP地址。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

●startupProbe(这个1.17版本增加的)

判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

Probe支持三种检查方法:

●exec

在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

●tcpSocket

对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

●httpGet

对指定的端口和uri路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的

每次探测都将获得以下三种结果之一

●成功(Success):表示容器通过了检测。
●失败(Failure):表示容器未通过检测。
●未知(Unknown):表示检测没有正常进行。

官网示例:

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

示例1:exec方式

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      failureThreshold: 1
      initialDelaySeconds: 5
      periodSeconds: 5

initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
#periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。

vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
liveness-exec       1/1     Running   1          85s

示例2:httpGet方式

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
kubectl create -f httpget.yaml
kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html
kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
liveness-httpget   1/1     Running   1          2m44s


示例3:tcpSocket方式

apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
  name: probe-tcp
spec:
  containers:
  - name: nginx
    image: soscscs/myapp:v1
    livenessProbe:
      initialDelaySeconds: 5
      timeoutSeconds: 1
      tcpSocket:
        port: 8080
      periodSeconds: 10
      failureThreshold: 2
kubectl create -f tcpsocket.yaml
kubectl exec -it probe-tcp  -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      1/nginx: master pro
kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running             0          1s
probe-tcp   1/1     Running             1          25s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running             2          45s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running             3          65s


示例4:就绪检测

vim readiness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:
  name: readiness-httpget
  namespace: default
spec:
  containers:
  - name: readiness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index1.html
      initialDelaySeconds: 1
      periodSeconds: 3
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
kubectl create -f readiness-httpget.yaml

readiness探测失败,无法进入READY状态

kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   0/1     Running   0          18s
kubectl exec -it readiness-httpget sh
 # cd /usr/share/nginx/html/
 # ls
50x.html    index.html
 # echo 123 > index1.html 
 # exit
kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          2m31s
kubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.html
kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          4m10s
readiness-httpget   0/1     Running   1          4m15s


示例5:就绪检测2

vim readiness-myapp.yaml
apiVersion: v1
kind: Pod
metadata:
  name: myapp1
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp2
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Pod
metadata:
  name: myapp3
  labels:
     app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    ports:
    - name: http
      containerPort: 80
    readinessProbe:
      httpGet:
        port: 80
        path: /index.html
      initialDelaySeconds: 5
      periodSeconds: 5
      timeoutSeconds: 10 
---
apiVersion: v1
kind: Service
metadata:
  name: myapp
spec:
  selector:
    app: myapp
  type: ClusterIP
  ports:
  - name: http
    port: 80
    targetPort: 80
kubectl create -f readiness-myapp.yaml
kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   1/1     Running   0          3m42s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          3m42s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          3m42s   10.244.2.14   node02   <none>           <none>

NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    3m42s   app=myapp

NAME                   ENDPOINTS                                      AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.13:80,10.244.2.14:80   3m42s
kubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html

readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址

kubectl get pods,svc,endpoints -o wide
NAME         READY   STATUS    RESTARTS   AGE     IP            NODE     NOMINATED NODE   READINESS GATES
pod/myapp1   0/1     Running   0          5m17s   10.244.2.13   node02   <none>           <none>
pod/myapp2   1/1     Running   0          5m17s   10.244.1.15   node01   <none>           <none>
pod/myapp3   1/1     Running   0          5m17s   10.244.2.14   node02   <none>           <none>
NAME                 TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE     SELECTOR
......
service/myapp        ClusterIP   10.96.138.13   <none>        80/TCP    5m17s   app=myapp

NAME                   ENDPOINTS                       AGE
......
endpoints/myapp        10.244.1.15:80,10.244.2.14:80   5m17s

启动、退出动作

vim post.yaml
apiVersion: v1
kind: Pod
metadata:
  name: lifecycle-demo
spec:
  containers:
  - name: lifecycle-demo-container
    image: soscscs/myapp:v1
    lifecycle:   #此为关键字段
      postStart:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"]      
      preStop:
        exec:
          command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  initContainers:
  - name: init-myservice
    image: soscscs/myapp:v1
    command: ["/bin/sh", "-c", "echo 'Hello initContainers'   >> /var/log/nginx/message"]
    volumeMounts:
    - name: message-log
      mountPath: /var/log/nginx/
      readOnly: false
  volumes:
  - name: message-log
    hostPath:
      path: /data/volumes/nginx/log/
      type: DirectoryOrCreate
kubectl create -f post.yaml
kubectl get pods -o wide
NAME             READY   STATUS    RESTARTS   AGE    IP            NODE     NOMINATED NODE   READINESS GATES
lifecycle-demo   1/1     Running   0          2m8s   10.244.2.28   node02   <none>           <none>
kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
Hello initContainers
Hello from the postStart handler

在 node02 节点上查看

cd /data/volumes/nginx/log/
ls
access.log  error.log  message
cat message 
Hello initContainers
Hello from the postStart handler
#由上可知,init Container先执行,然后当一个主容器启动后,Kubernetes 将立即发送 postStart 事件。

删除 pod 后,再在 node02 节点上查看

kubectl delete pod lifecycle-demo
cat message 
Hello initContainers
Hello from the postStart handler
Hello from the poststop handler
#由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/66744.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初识Container

1. 什么是Container&#xff08;容器&#xff09; 要有Container首先要有Image&#xff0c;也就是说Container是通过image创建的。 Container是在原先的Image之上新加的一层&#xff0c;称作Container layer&#xff0c;这一层是可读可写的&#xff08;Image是只读的&#xff0…

Mybatis-Plus使用updateById()、update()将字段更新为null

文章目录 一、问题背景二、问题原因三、解决方案1. 设置全局的field-strategy2. 对某个字段设置单独的field-strategy3. 使用UpdateWrapper方式更新&#xff08;推荐使用&#xff09; 本文主要介绍了Mybatis-Plus使用updateById()、update()将字段更新为null&#xff0c;文中通…

Redis 6.5 服务端开启多线程源码

redis支持开启多线程&#xff0c;只有从socket到读取缓冲区和从输出缓冲区到socket这两段过程是多线程&#xff0c;而命令的执行还是单线程&#xff0c;并且是由主线程执行 借鉴&#xff1a;【Redis】事件驱动框架源码分析&#xff08;多线程&#xff09; 一、main启动时初始化…

freeswitch的mod_xml_curl模块动态获取dialplan

概述 freeswitch是一款简单好用的VOIP开源软交换平台。 mod_xml_curl模块支持从web服务获取xml配置&#xff0c;本文介绍如何动态获取dialplan配置。 环境 centos&#xff1a;CentOS release 7.0 (Final)或以上版本 freeswitch&#xff1a;v1.6.20 GCC&#xff1a;4.8.5…

HTTPS安全通信

HTTPS,TLS/SSL Hyper Text Transfer Protocol over Secure Socket Layer,安全的超文本传输协议,网景公式设计了SSL(Secure Sockets Layer)协议用于对Http协议传输的数据进行加密,保证会话过程中的安全性。 使用TCP端口默认为443 TLS:(Transport Layer Security,传输层…

View绘制流程-Window创建

前言&#xff1a; View绘制流程中&#xff0c;主要流程是这样的&#xff1a; 1.用户进入页面&#xff0c;首先创建和绑定Window&#xff1b; 2.首次创建以及后续vsync信号来临时&#xff0c;会请求执行刷新流程&#xff1b; 3.刷新流程完成后&#xff0c;会通知SurfaceFlin…

(力扣)用两个栈实现队列

这里是栈的源代码&#xff1a;栈和队列的实现 当然&#xff0c;自己也可以写一个栈来用&#xff0c;对题目来说不影响&#xff0c;只要符合栈的特点就行。 题目&#xff1a; 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作&#xff08;push、pop、pe…

【HDFS】每天一个RPC系列----complete(二):客户端侧

上图给出了最终会调用到complete RPC的客户端侧方法链路(除去Router那条线了)。 org.apache.hadoop.hdfs.DFSOutputStream#completeFile(org.apache.hadoop.hdfs.protocol.ExtendedBlock): 下面这个方法在complete rpc返回true之前,会进行重试,直到超过最大重试次数抛异…

深度优先搜索与动态规划|543, 124, 687

深度优先搜索与动态规划|543. 二叉树的直径&#xff0c;124. 二叉树中的最大路径和&#xff0c;687. 最长同值路径 二叉树的直径二叉树中的最大路径和最长同值路径 二叉树的直径 好久没写二叉树了&#xff0c;主要还是看遍历的顺序是什么样的。 # Definition for a binary tr…

代码随想录算法训练营之JAVA|第二十五天| 491. 递增子序列

今天是第25天刷leetcode&#xff0c;立个flag&#xff0c;打卡60天。 算法挑战链接 491. 递增子序列https://leetcode.cn/problems/non-decreasing-subsequences/ 第一想法 题目理解&#xff1a;在给定的一个数组中&#xff0c;找出全部的递增列表。要求不能有重复。 这是一…

【mars3d - 报错】使用mars3d加载时的一些报错和不生效问题

在使用过程中遇到过很多报错&#xff0c;不管大的还是小的&#xff0c;在这里总结下&#xff0c;应该会持续更新&#xff1b; 1、设置贴地之后报错 可能是因为 arcType&#xff1a;Cesium.arcType.NONE 与 clampToGround&#xff1a;true 是相互冲突的&#xff0c;两个都设置就…

jdk1.7与jdk1.8的HashMap区别2-底层原理区别

jdk1.7与jdk1.8的HashMap区别1-基本结构与属性对比_ycsdn10的博客-CSDN博客 一、代码区别 1.代码数&#xff1a;JDK1.7与JDK1.8相差了一倍的代码 2.方法数&#xff1a;JDK1.7是40个&#xff0c;JDK1.8是51个&#xff08;只算基本方法&#xff09; 二、Hash差别 1.JDK1.7 st…

深入学习 Redis - 事务、实现原理、指令使用及场景

目录 一、Redis 事务 vs MySQL事务 二、Redis 事务的执行原理 2.1、执行原理 2.2、Redis 事务设计这么简单&#xff0c;为什么不涉及成 MySQL 那样强大呢&#xff1f; 三、Redis 事务的使用 3.1、使用场景 3.2、具体演示 开启/执行/放弃事务 watch 监控 watch 实现原理…

SQL Server数据库如何添加Oracle链接服务器(Windows系统)

SQL Server数据库如何添加Oracle链接服务器 一、在添加访问Oracle的组件1.1 下载Oracle的组件 Oracle Provider for OLE DB1.2 注册该组件1.2.1 下载的压缩包解压位置1.2.2 接着用管理员运行Cmd 此处一定要用管理员运行&#xff0c;否则会报错 二、配置环境变量三、 重启SQL Se…

Android Studio System.out.println()中文乱码

第一步&#xff1a; 打开studio64.exe.vmoptions加入-Dfile.encodingUTF-8 第二步&#xff1a; File-Settings-Editor-File Encodings 把所有的编码格式改为UTF-8 尝试跑一下代码&#xff0c;如果还不行&#xff0c;重启IDE 再试试。

【链表OJ 1】移除链表元素val

大家好&#xff0c;欢迎来到我的博客&#xff0c;此题是关于链表oj的第一题&#xff0c;此后还会陆续更新博客&#xff0c;如有错误&#xff0c;欢迎大家指正。 来源:https://leetcode.cn/problems/remove-linked-list-elements/description/ 题目: 方法一:定义prev和cur指针…

大模型“瘦身”进手机 下一个iPhone时刻将至?

一股“端侧大模型”浪潮正在涌来。华为、高通等芯片巨头正探索将AI大模型植入端侧&#xff0c;让手机实现新一代物种进化。 相比ChatGPT、Midjourney等AI应用依赖云端服务器提供服务&#xff0c;端侧大模型主打在本地实现智能化。它的优势在于能够更好地保护隐私&#xff0c;同…

我在VScode学Java多态(Java多态、instanceof)

Java的多态&#xff08;Polymorphism&#xff09;是面向对象编程中的一种特性&#xff0c;它允许不同的对象能够以统一的方式进行访问和操作。它允许一个类的实例在运行时表现出多种形态。 Java多态的实现主要依赖于两个基本概念&#xff1a;继承和方法重写。在Java中&#xff…

DC-7靶机

DC-7靶机地址 同样的&#xff0c;把靶机跟kali放在同一网段&#xff0c;&#xff08;NAT模式&#xff09; 主机发现 arp-scan -l端口扫描 nmap -A -T4 -p- 192.168.80.13922端口开始&#xff0c;80端口开启 浏览器先访问一下靶机的80端口 熟悉的Drupal站点 先爆破一下目录…

http相关知识点

文章目录 长链接http周边会话保持方案1方案2 基本工具postmanFiddlerFiddler的原理 长链接 一张网页实际上可能会有多种元素组成&#xff0c;这也就说明了网页需要多次的http请求。可由于http是基于TCP的&#xff0c;而TCP创建链接是有代价的&#xff0c;因此频繁的创建链接会…
最新文章