医疗保健中的 NLP:实体链接

一、说明

        HEalthcare和生命科学行业产生大量数据,这些数据是由合规性和监管要求,记录保存,研究论文等驱动的。但随着数据量的增加,搜索用于研究目的的必要文件和文章以及数据结构成为一个更加复杂和耗时的过程。例如,如今,生物医学搜索引擎包含超过40万篇文章,这些文章代表了大量有用的医疗保健信息。但是手动处理如此大量的数据是一条无法通行的路径,而自然语言处理(NLP)等工具有助于从文本数据中提取信息。

        NLP 工具是 AI 的一个分支,包括语音识别、文本分析、翻译和其他与语言相关的目标等应用程序。NLP 提供了通过阅读和理解数据,然后将其转换为可理解的结构化数据,从半结构化/非结构化临床和新兴数据中提取有价值的见解的能力。NLP背后的想法是更好地将人类与计算机的处理能力联系起来,以增强护理并加快治疗的交付并加速研究。

        在自由文本中识别医学术语是NLP任务的第一步,因为自动索引生物医学文献并从临床笔记文本中提取患者的问题列表。在生物医学文献中可以找到许多医学术语:疾病名称(结核病,神经胶质瘤,糖尿病),症状(急性头痛,发烧,腹痛),治疗(化疗,药物治疗),诊断测试(活检,光学相干断层扫描,心电图),化学物质,解剖结构等。除了检测文本中的医学术语外,每个术语都应与医学编码标准相关联:疾病和相关健康问题的国际统计分类(ICD-11),统一医学语言系统(UMLS),当前程序术语(CPT)和许多其他术语。特别是,要成功利用生物医学记录中包含的大量知识,拥有自动索引技术至关重要。NLP 领域的一个概念称为实体链接,它有助于解决此任务。

二、用于概念检测的实体链接

在医疗保健领域,准确的实体链接对于正确理解生物医学背景至关重要。在处理生物医学概念时,人们可能会偶然发现许多问题:许多不同的实体可以有非常相似的提及,实体可以通过各种拼写形式在文本中提及,缩写形式的实体可能不会以独特的方式扩展。面对这些挑战,实体链接 (EL) 中的故障将导致对上下文信息的错误解释。在医疗保健领域,此类错误可能会导致医疗相关决策的风险。

EL在医疗保健领域的另一个特点是公开可用的生物医学EL数据集的可用性非常有限。至少,它使构建和训练 EL 模型的过程复杂化;假设推理数据量很大,这样的EL模型可能不够普遍。但是,在最坏的情况下,某些类别的生物医学实体可能没有在公开可用的数据集中注册,这导致为给定类别的实体手动构建此类训练集。

这就是为什么生物医学文本上的EL在许多方面与其他领域的文本不同。因此,解决这些具有挑战性的任务需要复杂的方法。

三、数据和方法

3.1 词汇表和符号

实体 — 命名的单词或短语(疾病、基因、药物等的名称)。通常,实体是从知识库中提取的。

知识库——实体字典;通常包括规范名称、定义、同义词等。

提及(实体) — 文本中实体的名称。此外,上下文(周围)信息可以被视为提及。

实体链接 — 将文本中对实体的提及映射到其在知识库中的标识。

3.2 模型概述

作为EL模型,我们考虑Siamese神经网络,它旨在学习实体提及和相应概念之间的相似性。

我们构建以下模型(参见图 1)。神经网络的两个分支相应地对应于提及输入和实体输入。每个分支将整个文本映射到密集的向量(从一侧提及上述实体和句子的文本,从另一侧引用知识库的实体级信息)。在训练过程中,模型学习增加从正确链接的对提及+实体中提取的向量之间的余弦相似性,并降低错误配对向量之间的余弦相似性。在推理阶段,每个输入提及都映射到向量空间中,并假定最近的实体向量是相应实体的向量。

暹罗神经网络

图1.暹罗神经网络

然而,这种方法有几个缺点,特别是对于生物医学数据。

3.3 生物医学EL中的问题

        在仅存在少数生物医学EL数据集的情况下,准备准确的训练数据集是一项重要任务。例如,考虑疾病概念链接任务,可以从以下数据集收集训练信息:

–NCBI疾病数据集。NCBI疾病语料库的公开发布包含6.9k种疾病提及,这些疾病被映射到0.8k独特的疾病概念(来自MeSH和OMIM本体)。NCBI疾病数据集的内部精度:<90%。

–MedMentions是生物医学论文的语料库,并提及UMLS实体。它包含 4392 个摘要和 34k 个唯一的 UMLS ID。该数据集不仅仅是一组疾病。MedMentions的内部精度为97.3%。通过保留22种UMLS类型,涵盖疾病和生物过程以及具有定义的实体,可以获得一组4805种UMLS类疾病实体。这些疾病几乎在所有摘要中都有标记,涵盖了15.4k独特疾病的8k提及。

–BC5CDR 语料库由 1.5k 篇 PubMed 文章组成,带有注释的化学物质、疾病和化学-疾病相互作用。通过去除化学物质并仅保留疾病,人们可以获得一组1.5k摘要,其中涵盖了3.1k次提及的疾病。这些提及可以映射到1k个独特的MeSH实体中。

        正如人们所看到的,收集的摘要总数可以达到7k,而其中的提及/实体数量分别约为30k/5k。这表明我们的训练数据因提及实体而高度多样化。此外,绝大多数训练样本包含冗余信息(摘要中的单词,与疾病没有任何共同之处)。

        但是所考虑的模型将单词的索引映射到嵌入中,并且使用具有一些有用信息的非常大的字典来学习这种映射可能不够充分和有效。可以通过以下方式解决此问题:

        -使用预先训练的嵌入(生物医学单词的训练嵌入,例如BioWordVec)-过滤字典并仅保留有用的信息(例如单词,这是提及短语的粒子,知识库中的单词)

使用第二种方法,可以将字典的大小压缩 10-100 倍,这将有利于训练和推理加速。

四、质量增强

        将带有提及的上下文信息放入模型的提及分支中可能会提高 EL 的质量。某些提及可能仅与提及短语正确链接,上下文可能在链接过程中发挥关键作用。有了这个,模型可以接受,期待提及,引用提及的句子。

        由于可以增加提及和相应上下文的开放可能性,因此可以开发这种方法以提高模型的泛化能力。例如,有一对“提及+摘要中的提及句子”和“来自知识库的实体”,可以:

        -创建负(非链接)对,使用句子中的随机单词而不是提及;
        -通过句子中的向前和/或向后单词扩展提及;
        -删除句子的随机部分而不提及部分。

4.1 培训程序

        由于任务是度量学习,因此必须训练模型以找到正确的“提及”-“实体”对之间的相似之处和不正确的对之间的相似之处。这样的模型不能只在正对上训练,因为它不会被训练来区分正确和不正确的链接。另一方面,我们不能为每次提及分配所有负实体,因为我们的数据集将通过幂律扩展提及次数,这对于相对较大的训练 EL 数据集来说可能具有挑战性。

因此,要训练EL模型,必须考虑一些采样过程,例如,三重损失,它适用于三重“提及”-“正确的实体”-“不正确的实体”。此外,可以使用特殊的批次内抽样:通过分配给定批次中批次随机实体中的每个提及,链接到其他提及,可以通过负样本扩展一批正对。

一些提升可以通过处理硬性负样本获得,即错误链接的实体,对于给定的提及,它们比相应的实体更相似。

4.2 质量指标

        通过将概念名称的真实和预测ID与指定的余弦相似性截止值进行比较,测量每个句子的EL质量。评估概念名称实体链接质量的方法是真阳性(TP),真阴性(TN),假阴性(FN)。例:

        -真正的疾病标签(上ID是真的):广泛的认知障碍D003072,如谵妄D003693或ADD010302,以前与高血药水平的SSRIs无关。
        -预测疾病(上 ID 为真,下 ID 为预测):广泛的认知障碍D003072D003072,如谵妄 D003693 或 ADD010302D0220454,以前与 SSRIsD001658 的高血水平无关。
-TP:认知障碍D003072D003072 — 当ID_true等于ID_pred时.
-FP:SSRIsD001658 , ADD010302D0220454 — 当ID_pred不等于ID_true时。
–FN:deliriumD003693 — 当ID_true不等于ID_pred时。

作为准确性指标,我们使用了几个指标来更好地衡量模型准确性:

–精度

–召回

–F1 分数

–马修斯相关系数

–ROC-AUC
–K 精度

五、结果和结论

        在生成的模型中,我们获得了验证数据集的下一个分数(见图 2)。

不同相似性阈值的不同质量指标图表

图2.不同相似性阈值的不同质量指标图表

我们发现,对一个概念的正确和不正确描述的分离质量最好,相似度约为0.8。也就是说,如果描述和概念向量之间的余弦相似性大于 0.8,那么这个对很可能是正确的。

对于 K 处的精度计算,验证样本中的每个概念都必须选择 K 最接近的描述,并记住正确描述的数量。如果模型是完美的,那么对于每个概念,最接近的(K = 1)描述都是正确的。我们在原始(非乘法)验证样本上进行了此实验。结果,我们得到了以下 K = 5 时的精度值(见表 1)。

前 5 个描述的精度为 K

表 1.前 5 个描述的精度为 K

K 的精度表明,对于验证样本中的概念,最接近的描述是正确的,准确率为 85%,正确的描述位于前 5 个最接近的概率为 97%。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/67156.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序中的分包使用介绍

一、分包的好处 可以优化小程序首次启动的下载时间 在多团队共同开发时可以更好的解耦协作 主包&#xff1a;放置默认启动页面/TabBar 页面&#xff0c;公共资源/JS 脚本 分包&#xff1a;根据开发者的配置进行划分 限制&#xff1a;所有分包大小不超过 20M&#xff0c;单…

无人驾驶实战-第十二课(强化学习自动驾驶系统)(完)

在七月算法上报了《无人驾驶实战》课程&#xff0c;老师讲的真好。好记性不如烂笔头&#xff0c;记录一下学习内容。 课程入口&#xff0c;感兴趣的也可以跟着学一下。 ————————————————————————————————————————— 强化学习&#xff…

php webshell 免杀入门

webshell 查杀软件&#xff1a; d盾、安全狗、护卫神、Sangfor WebShellKill 在线查杀 百度WEBDIR https://scanner.baidu.com 河马 https://www.shellpub.com cloudwalker牧云 https://webshellchop.chaitin.cn 查杀技术 静态检测、动态检测、日志检查 静态检查&#xff1a…

通用FIR滤波器的verilog实现(内有Lowpass、Hilbert参数生成示例)

众所周知&#xff0c;Matlab 中的 Filter Designer 可以直接生成 FIR 滤波器的 verilog 代码&#xff0c;可以方便地生成指定阶数、指定滤波器参数的高通、低通、带通滤波器&#xff0c;生成的 verilog 代码也可以指定输入输出信号的类型和位宽。然而其生成的代码实在算不上美观…

智能型静电消除器的优势有哪些?

智能型静电消除器是一种使用先进技术和智能控制系统来消除静电问题的设备。静电是由于电荷不平衡而引起的现象&#xff0c;常见于工业生产、医疗设备、办公环境等场合。静电的存在可能导致电子设备故障、火灾、等问题。 智能型静电消除器与传统静电消除器相比&#xff0c;具有以…

Python做一个绘图系统3:从文本文件导入数据并绘图

文章目录 导入数据文件对话框修改绘图逻辑源代码 Python绘图系统系列&#xff1a;将matplotlib嵌入到tkinter 简单的绘图系统 导入数据 单纯从作图的角度来说&#xff0c;更多情况是已经有了一组数据&#xff0c;然后需要将其绘制。这组数据可能是txt格式的&#xff0c;也可能…

uni-app:实现点击按钮,进行数据累加展示(解决数据过多,导致出错)

效果 代码 核心代码 一、标签显示 <!-- 加载更多 --> <view class"load_more" v-if"info.length > pageNum * pageSize" tap"loadMore">加载更多 </view> v-if"info.length > pageNum * pageSize"&#xf…

远景智能PMO负责人严晓婷受邀为第十二届中国PMO大会演讲嘉宾

上海远景科创智能科技有限公司PMO负责人严晓婷女士受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾&#xff0c;演讲议题&#xff1a;能源物联网产品标准项目和非标准项目的并行管理。大会将于8月12-13日在北京举办&#xff0c;敬请关注&#xff01; 议题简要&#xff1…

教雅川学缠论07-中枢实战众泰汽车000980

本文实战众泰汽车 下面是2023年11月14-2023年8月8众泰汽车日K图 先画日K 接下来处理包含&#xff0c;就变成下面这个样子 下面在套上缠论的理论&#xff0c;未来股价的走势应该是红色椭圆形虚线里面的样子 好了&#xff0c;文章就到这里&#xff0c;如果众泰最终不是这个走势…

网页版Java(Spring/Spring Boot/Spring MVC)五子棋项目(四)对战模块

网页版Java&#xff08;Spring/Spring Boot/Spring MVC&#xff09;五子棋项目&#xff08;四&#xff09;对战模块 一、约定前后端交互接口1. 建立连接接口2. 针对落子的请求和响应 二、实现前端页面三、实现后端1. 当用户进入房间&#xff0c;更新用户状态 OnlineUserManager…

W5500-EVB-PICO作为TCP Client 进行数据回环测试(五)

前言 上一章我们用W5500-EVB-PICO开发板通过DNS解析www.baidu.com&#xff08;百度域名&#xff09;成功得到其IP地址&#xff0c;那么本章我们将用我们的开发板作为客户端去连接服务器&#xff0c;并做数据回环测试&#xff1a;收到服务器发送的数据&#xff0c;并回传给服务器…

FFmpeg 编码详细流程

介绍 FFmpeg的 libavcodec 模块完成音视频多媒体的编解码模块。FFmpeg 本身不具有音视频编码的功能和底层能力&#xff0c;只是对各类第三方的编码器API 进行封装调用。老版本的 FFmpeg 将avcodec_encode_video2()作为视频的解码函数 API&#xff0c;将avcodec_encode_audio2(…

IO模型-信号驱动IO

linux内核中存在一个信号SIGIO&#xff0c;这个信号就是用于实现信号驱动IO的。当应用程序中想要以信号驱动IO的模型读写硬件数据时&#xff0c;首先注册一个SIGIO信号的信号处理函数,当硬件数据就绪&#xff0c;硬件会发起一个中断&#xff0c;在硬件的中断处理函数中向当前进…

css-4:元素水平垂直居中的方法有哪些?如果元素不定宽高呢?

1、背景 在开发中&#xff0c;经常遇到这个问题&#xff0c;即让某个元素的内容在水平和垂直方向上都居中&#xff0c;内容不仅限于文字&#xff0c;可能是图片或其他元素。 居中是一个非常基础但又是非常重要的应用场景&#xff0c;实现居中的方法存在很多&#xff0c;可以将这…

解决 Android Studio 的 Gradle 面板上只有关于测试的 task 的问题

文章目录 问题描述解决办法 笔者出问题时的运行环境&#xff1a; Android Studio Flamingo | 2022.2.1 Android SDK 33 Gradle 8.0.1 JDK 17 问题描述 笔者最近发现一个奇怪的事情。笔者的 Android Studio 的 Gradle 面板上居然除了用于测试的 task 之外&#xff0c;其它什…

centos8.5本地yum源报错

在下载文件出现以下错误 [rootserver ~]# yum install gcc Updating Subscription Management repositories. Unable to read consumer identity This system is not registered with an entitlement server. You can use subscription-manager to register. RHEL8.5-BaseOS …

【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

冠达管理:大跳水!美国又要下黑手!3300亿巨头突然死亡,疯抢锂矿

美国又要下“黑手”。 据环球网征引路透社音讯&#xff0c;美国政府高级官员泄漏&#xff0c;白宫当地时间9日将具体阐明约束美国在华出资灵敏技能的方案&#xff0c;并要求将其他有关出资奉告政府。 美股商场上演了一场大败局。当地时间8月9日美股盘中&#xff0c;全球同享工…

如何给Linux开启swap虚拟内存

查看系统内存资源 free -h 创建swap分区 dd if/dev/zero of/swapfile bs1024 count4194304dev/zero&#xff1a;是Linux的一种特殊字符设备(输入设备)&#xff0c;可以用来创建一个指定长度用于初始化的空文件&#xff0c;如临时交换文件&#xff0c;该设备无穷尽地提供0&…