【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.57】引入可形变卷积

文章目录

  • 前言
  • 一、解决问题
  • 二、基本原理
  • 三、​添加方法
  • 四、总结


前言

作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。

具体改进办法请关注后私信留言!关注免费领取深度学习算法学习资料!


一、解决问题

卷积层用于提取图像中的特征信息,传统的矩形卷积通常使用固定的大小和比例的卷积核对特征图的特定位置进行特征学习和下采样。但在同一特征层的不同位置对应的是不同尺度和形状的目标,因此,目标检测具有一定的局限性。可变形卷积可根据对象的比例和形状自适应调整,变形卷积网络提出的不规则卷积核,有效地克服了固定矩形结构采样不足的缺点,提高了网络对物体变形的模拟
能力。YOLO检测网络的卷积层为conv2D卷积+BN+Silu激活函数,尝试将卷积层的卷积改为可可形变卷积,引入可变形卷积,扩大特征图的感受野,使提取的特征辨析力更强,有效地提高了模型的识别能力。

二、基本原理

在这里插入图片描述原文链接
代码链接
卷积神经网络(CNN)由于其构建模块中的固定几何结构,固有地局限于模型几何变换。在这项工作中,我们引入了两个新模块来增强神经网络的变换建模能力,即可变形卷积和可变形RoI池。这两种方法都基于在模块中增加额外偏移量的空间采样位置,并从目标任务中学习偏移量,而无需额外监督的想法。新的模块可以很容易地取代现有CNN中的普通模块,并且可以通过标准反向传播进行端到端的训练,从而产生可变形的卷积网络。广泛的实验验证了我们的方法在复杂的视觉任务(对象检测和语义分割)上的有效性。代码将被发布。

3x3可形变卷积结构示意图

三、​添加方法

第一步:先在common中定义模块DCNConv,然后在yolo.py中注册该模块。部分代码如下:

class DCNConv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv1 = nn.Conv2d(c1, c2, 3, 2, 1, groups=g, bias=False)
        deformable_groups = 1
        offset_channels = 18
        self.conv2_offset = nn.Conv2d(c2, deformable_groups * offset_channels, kernel_size=3, padding=1)
        self.conv2 = DeformConv2d(c2, c2, kernel_size=3, padding=1, bias=False)

        # self.conv2 = DeformableConv2d(c2, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(c2)
        self.act1 = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        self.bn2 = nn.BatchNorm2d(c2)
        self.act2 = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

第二步:定义yaml网络结构文件。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, DCNConv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

第三步:在train.py中选择网络结构yaml即可。

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!


YOLO系列算法改进方法 | 目录一览表
💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️6. 增加小目标检测层
💡🎈☁️7. 损失函数改进
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️9. 锚框K-Means算法改进K-Means++
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS
💡🎈☁️20. Involution新神经网络算子引入网络
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络
💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积
💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv
💡🎈☁️29. 引入Swin Transformer v2.0版本
💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️34. 更换激活函数为FReLU
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制
💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络
💡🎈☁️38. 引入RepVGG模型结构
💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022
💡🎈☁️40. 轻量化mobileone主干网络引入
💡🎈☁️41. 引入SPD-Conv处理低分辨率图像和小对象问题
💡🎈☁️42. 引入V7中的ELAN网络
💡🎈☁️43. 结合最新Non-local Networks and Attention结构
💡🎈☁️44. 融入适配GPU的轻量级 G-GhostNet
💡🎈☁️45. 首发最新特征融合技术RepGFPN(DAMO-YOLO)
💡🎈☁️46. 改进激活函数为ACON
💡🎈☁️47. 改进激活函数为GELU
💡🎈☁️48. 构建新的轻量网络—Slim-neck by GSConv(2022CVPR)
💡🎈☁️49. 模型剪枝、蒸馏、压缩
💡🎈☁️50. 超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet
💡🎈☁️51.融入多分支空洞卷积结构RFB-Bottleneck改进PANet构成新特征融合网络
💡🎈☁️52.将YOLOv8中的C2f模块融入YOLOv5
💡🎈☁️53.融入CFPNet网络中的ECVBlock模块,提升小目标检测能力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/777.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[JS与链表]普通链表

为什么要用链表要储存一系列数据,最常用的数据结构是数组。数组有个缺点就是在中间插入或删除元素需要移动元素,成本很高。什么是链表链表也是有序元素的集合结构。链表中的元素在内存中并不是连续放置的。每个元素都可以理解为一个对象。包含了本身元素…

简单了解JSP

JSP概念与原理概念: Java Server Pages,Java服务端页面一种动态的网页技术,其中既可以定义 HTML、JS、CSS等静态内容,还可以定义Java代码的动态内容JSP HTML Java, 用于简化开发JSP的本质上就是一个ServletJSP 在被访问时,由JSP容…

博途PLC开放式以太网通信TRCV_C指令应用编程(运动传感器UDP通信)

博途PLC开放式以太网通信TSENG_C指令应用,请参看下面的文章链接: 博途PLC 1200/1500PLC开放式以太网通信TSEND_C通信(UDP)_plc的udp通信_RXXW_Dor的博客-CSDN博客开放式TSEND_C通信支持TCP 、UDP等,关于TSEND_C的TCP通信可以参看下面这篇文章:博途PLC 1200/1500PLC开放式…

opencv识别车道线(霍夫线变换)

目录1、前言2、霍夫线变换2.1、霍夫线变换是什么?2.2、在opencv中的基本用法2.2.1、HoughLinesP函数定义2.2.2、用法3、识别车道3.1、优化3.1.1、降噪3.1.2、过滤方向3.1.3、截选区域3.2、测试其它图片3.2.1、代码3.2.2、图片13.2.3、图片23.2.4、图片31、前言 最近…

C++模拟实现红黑树

目录 介绍----什么是红黑树 甲鱼的臀部----规定 分析思考 绘图解析代码实现 节点部分 插入部分分步解析 ●父亲在祖父的左,叔叔在祖父的右: ●父亲在祖父的右,叔叔在祖父的左: 测试部分 整体代码 介绍----什么是红黑树 红…

2023年江苏省职业院校技能大赛中职网络安全赛项试卷-教师组任务书

2023年江苏省职业院校技能大赛中职网络安全赛项试卷-教师组任务书 一、竞赛时间 9:00-12:00,12:00-15:00,15:00-17:00共计8小时。 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 第一阶段 基础设施设置与安全加固、网络安全事件响应、数…

链表相关oj题

1.Leetcode203 移除链表元素 解题思路:从头节点开始进行元素删除,每删除一个元素,需要重新链接节点 struct ListNode* removeElements(struct ListNode* head, int val){struct ListNode*dummyheadmalloc(sizeof(struct ListNode));dummyhea…

spring5(四):IOC 操作 Bean 管理(基于注解方式)

IOC操作Bean管理(基于xml方式)前言一、注解1、概述二、入门案例1、Bean 的创建2、Bean的自动装配2.1 Autowired2、Qualifie3、Resource4、Value3、扫描组件3.1 配置文件版3.2 注解版4、测试前言 本博主将用CSDN记录软件开发求学之路上亲身所得与所学的心…

Mysql常用命令

mysql连接: [roothost]# mysql -u root -p Enter password:******创建数据库: CREATE DATABASE 数据库名; 删除数据库: drop database 数据库名; 使用mysqladmin删除数据库: [roothost]# mysqladmin -u root -p dr…

【数据结构】链表OJ(二)

Yan-英杰的博客 悟已往之不谏 知来者之可追 目录 一、反转链表 二、合并两个有序链表 三、链表分割 四、链表的回文结构 一、反转链表 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 输入:head [1,2] 输出:[2,1] 示例 3&#xf…

Vulnhub靶场----10、LazySysadmin

文章目录一、环境搭建二、渗透流程一、环境搭建 DC-7下载地址:https://download.vulnhub.com/dc/DC-9.zip kali:192.168.144.148 DC-9:192.168.144.157 二、渗透流程 1、信息收集nmap -sV -sT -p- -T4 192.168.144.157思路: 1、80…

基于vivado(语言Verilog)的FPGA学习(3)——FPGA理论知识

基于vivado(语言Verilog)的FPGA学习(3)——FPGA理论知识 文章目录基于vivado(语言Verilog)的FPGA学习(3)——FPGA理论知识1. FPGA介绍1.1.FPGA内部结构(1). 可…

【云原生|Docker】01-docker简介

目录 前言 Docker简介 1. 什么是docker 2. Docker和vm有什么区别 3. Docker架构 4. Docker特性 Docker安装 1. Docker版本介绍 2. Centos7安装docker 3. Docker校验 4. Docker启动 5. Docker配置文件 前言 接下来准备记录云原生系列的相关知识&#x…

Linux防火墙的关闭

查看防火墙的状态打开终端输入如下命令systemctl status firewalld如图所示:running表示防火墙目前处于打开状态输入命令进行关闭防火墙:systemctl stop firewalld如图所示正常的用户是没有权限的,需要输入管理员的密码才能够进行关闭防火墙。…

OpenAI GPT-4震撼发布:多模态大模型

OpenAI GPT-4震撼发布:多模态大模型发布要点GPT4的新功能GPT-4:我能玩梗图GPT4:理解图片GPT4:识别与解析图片内容怎样面对GPT4申请 GPT-4 API前言: 🏠个人主页:以山河作礼。 📝​📝:本文章是帮助大家更加了…

中国版的“ChatGPT”狂飙的机会或许要出现了

⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨‍🎓。 如果觉得本文能帮到您,麻烦点个赞👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三…

avue-crud组件的行内编辑实现失焦保存,在没有右侧操作栏的情况下

前言 关于 avue 框架,其实本来不想写一篇随笔记录的,因为目前在网上有很多文章,关于其配置项介绍的比较详细,而且官网上也有对应的文档,这两者结合足以满足大部分的开发需求。 不过,产品经理总会有些不一…

[大二下]什么是NPM

[大二下]什么是npm? 什么是NPM? 最简单来回答: ​ 就是一个包管理器, 一个仓库, 谁需要里面的物品, 谁就拿 npm 全称 Node Package(译: 包,包裹) Manager(译:如下). 直译过来就是 Node的包管理, 但是我们真正咱们约定俗成的称 NPM为"Node的包管理器". npm是Jav…

nvm使用-node版本切换-npm版本-node版本异常导致错误

目录什么是nvm?为什么要用它&#xff1f;它改变的是谁的版本号&#xff1f;安装并使用安装前操作安装使用&#xff08;常用命令&#xff09;nvm -hnvm install \<version\> [arch]nvm listnvm use [version] [arch]其他什么是nvm? .nvm是一个node的版本管理工具&#x…

【计算机图形学】扫面转换算法(DDA算法 中点画线算法 Bresenham画线算法)

模块1 扫描转换算法 一 实验目的 编写直线、弧线的光栅扫描转换算法&#xff0c;并对线宽与线形的算法加以探讨用DDA算法、中点画线算法、Bresenham画线算法绘制直线&#xff08;如果键盘输入数据&#xff0c;给出数据值&#xff1b;如果绘制图案&#xff0c;图案中应包含各种…
最新文章