Python爬虫性能优化:多进程协程提速实践指南

各位大佬们我又回来了,今天我们来聊聊如何通过多进程和协程来优化Python爬虫的性能,让我们的爬虫程序6到飞起!我将会提供一些实用的解决方案,让你的爬虫速度提升到新的高度!

在这里插入图片描述

1、多进程提速

首先,让我们来看看如何利用多进程来加速爬虫程序。多进程可以充分利用多核CPU的优势,同时处理多个任务,提高爬取效率。

解决方案:使用multiprocessing模块创建进程池,并将任务分配给不同的进程。每个进程独立执行,互不干扰,从而提高爬取速度。

示例代码:

import requests
from multiprocessing import Pool

 示例:使用多进程发送请求
def fetch_data(url):
    response = requests.get(url)
    return response.text

urls = ["http://example.com/resource1", "http://example.com/resource2", "http://example.com/resource3"]

 创建进程池
pool = Pool(processes=4)

 使用进程池并发发送请求
results = pool.map(fetch_data, urls)

2、协程提速

除了多进程,协程也是提高爬虫性能的一种有效方式。协程是一种轻量级的并发模型,可以在单个线程中实现并发执行,减少线程切换的开销,提高爬取效率。

解决方案:使用asyncioaiohttp库实现协程爬虫。通过使用asyncawait关键字,我们可以编写异步的爬取代码,充分利用网络IO的并发性能。

示例代码:

import asyncio
import aiohttp

async def fetch_data(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.text()

 示例:使用协程发送请求
async def main():
    urls = ["http://example.com/resource1", "http://example.com/resource2", "http://example.com/resource3"]
    tasks = [fetch_data(url) for url in urls]
    results = await asyncio.gather(*tasks)
    print(results)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

3、组合应用

最后,我们来谈谈如何将多进程和协程结合起来,进一步提升爬虫的性能。通过同时利用多进程和协程,我们可以充分发挥它们的优势,实现更高效的爬取。

解决方案:将爬取任务分配给多个进程,每个进程内部使用协程来并发发送请求。这样既利用了多核CPU的优势,又充分利用了协程的高效性能。

示例代码:

import requests
import asyncio
from multiprocessing import Pool
import aiohttp

示例:多进程中使用协程发送请求
async def fetch_data(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.text()

def process_task(url):
    loop = asyncio.get_event_loop()
    result = loop.run_until_complete(fetch_data(url))
    return result

urls = ["http://example.com/resource1", "http://example.com/resource2", "http://example.com/resource3"]

 创建进程池
pool = Pool(processes=4)

 使用进程池并发执行协程任务
results = pool.map(process_task, urls)

通过多进程和协程的组合应用,我们可以进一步提升Python爬虫的性能。利用多核CPU的优势和协程的高效性能,让我们的爬虫程序更快、更稳定地爬取数据。

希望这些解决方案对你有所帮助!如果你有任何问题或需要进一步了解,欢迎评论区提问留言。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/78272.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【云原生】Docker基本原理及镜像管理

目录 一、Docker概述 1.1 IT架构的演进: 1.2 Docker初始 1.3 容器的特点 1.4 Docker容器与虚拟机的区别 1.5 容器在内核中支持2种重要技术 1.6 Docker核心概念 1)镜像 2)容器 3)仓库 二、安装Docker 2.1 Yum安装Docker…

MySQL- sql语句基础

文章目录 1.select后对表进行修改(delete)2.函数GROUP_CONCAT()3.使用正则表达式 1.select后对表进行修改(delete) 报错:You can’t specify target table ‘Person’ for update in FROM clause 原因:mys…

由小波变换模极大值重建信号

给定信号, 令小波变换的尺度 则x(t)的二进小波变换为 令为取模极大值时的横坐标,那么就是模极大值。 目标是由坐标、模极大值及最后一级的低频分量重建信号x(t) 为了重建x(t),假定有一信号集合h(t),该集合中信号的小波变换和x(…

时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于KNN K近邻的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 基于KNN K近邻的时间序列预测-递归预测未来(多指标评价) …

2022年12月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:数组逆序重放 将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。 输入 输入为两行:第一行数组中元素的个数n(1 输出 输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔…

升级STM32电机PID速度闭环编程:从F1到F4的移植技巧与实例解析

引言: 在嵌入式系统开发中,STM32系列微控制器广泛应用于各种应用领域。而对于直流有刷电机的控制,PID速度闭环是一种常用的控制方式。本文将以此为例,探讨如何从STM32F1系列移植到STM32F4系列,并详细介绍HAL库在不同型…

APSIM模型参数优化 批量模拟丨气象数据准备、物候发育和光合生产、物质分配与产量模拟、土壤水分平衡算法、土壤碳氮平衡模块、农田管理模块等

随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生…

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测 目录 分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测 2.代码说明:要求于Matlab 2021版及以上版本。 程序…

使用 Jython 在 Java 中运行 Python

文章目录 使用 Jython 在 Java 中运行 Python创建 Python 代码 安装 Jython 库将 Jython 库与 IDE 链接用 Java 编写 Python 代码并编译它用 Java 编译的用于添加两个数字的 Python 代码用 Java 编译的用于查找月份最后一天的 Python 代码一些用 Java 编译时不运行的 Python 库…

步入React正殿 - React组件设计模式

目录 扩展学习资料 高阶组件 /src/components/hoc/withTooltip.js /src/components/hoc/itemA.jsx /src/components/hoc/itemB.jsx /src/App.js 函数作为子组件【Render pprops】 函数作为子组件 /src/components/rp/itemC.jsx【父组件】 /src/components/rp/withToo…

Java版电子招投标管理系统源码-电子招投标认证服务平台-权威认证 tbms

​ 功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,…

Java进阶篇--数据结构

目录 一.数组(Array): 1.1 特点: 1.2 基本操作: 1.3 使用数组的好处包括: 1.4 数组也有一些限制: 二.集合框架(Collections Framework): 2.1 列表…

【TA 挖坑02】RayMarching SDF 物体黏合

写在前面 由于实习和忙着论文很久没经营博客了,最近以各种方式收集到了一些想实现的效果,其中一个就是卡通云融合、变大变小、聚散收拢的效果如何实现的问题,这就不得不提搁置了很久的RayMarching... 挖坑!整理一下有帮助的文章…

Octree八叉树python

原理 简单示例: 假设我们有以下一组三维点云数据: points [[0.1, 0.1, 0.1],[0.4, 0.1, 0.1],[0.1, 0.4, 0.1],[0.4, 0.4, 0.1],[0.1, 0.1, 0.4],[0.4, 0.1, 0.4],[0.1, 0.4, 0.4],[0.4, 0.4, 0.4], ] 我们可以使用八叉树将这些点云数据存储在三维空…

MATLAB高分辨率图片

把背景调黑,把曲线调黄,把grid调白,调调字体字号的操作 close all a0:0.1:10; noise2*rand(1,length(a)); bsin(a)sin(3*a)noise;plot(a,b,y,linewidth,2); ylim([-3 4]) %y轴范围 set(gca,xgrid,on,ygrid,on,gridlinestyle,-,Grid…

8.13黄金是否进入下行通道?下周开盘如何布局

近期有哪些消息面影响黄金走势?黄金多空该如何研判? ​黄金消息面解析:周五(8月11日)现货黄金小幅收低,受累于美元走强和美国国债收益率上升,本周录得6月底以来最差单周表现。投资者在评估最新一批通胀报告和消费者信…

【hive】简单介绍hive的几种join

文章目录 前言1. Common Join2. Map Join介绍:使用方法:限制: 3. Bucket Map Join介绍:好处:使用条件:使用方法: 4. Sort Merge Bucket Map Join介绍:如何使用: 5. Skew …

使用 HTML、CSS 和 JavaScript 创建多步骤表单

使用 HTML、CSS 和 JavaScript 创建多步骤表单 为了处理又长又复杂的表单,我们需要将它们分成多个步骤。通过一次只在屏幕上显示一些输入,表单会感觉更容易理解,并防止用户感到被大量的表单字段淹没。 在本文中,我将逐步指导如何…

OSI七层模型及TCP/IP四层模型

目录 OSI七层模型 TCP/IP四层模型 OIS七层模型和TCP/IP模型图 七层详解 两种模型比较 为什么OSI七层体系结构不常用 四层详解 网络为什么要分层? 说说 OSI 七层模型和 TCP/IP 四层模型的关系和区别 OSI七层模型 OSI(Open System Interconnect&a…

编译redis-5.0.9报错zmalloc.h:50:31: 致命错误:jemalloc/jemalloc.h:没有那个文件或目录问题解决

上图 解决: make && make install MALLOClibc原因: 原因是jemalloc重载了Linux下的ANSI C的malloc和free函数。