深度学习1.卷积神经网络-CNN

目录

卷积神经网络 – CNN

CNN 解决了什么问题?

需要处理的数据量太大

保留图像特征

人类的视觉原理

卷积神经网络-CNN 的基本原理

卷积——提取特征

池化层(下采样)——数据降维,避免过拟合

全连接层——输出结果

CNN 有哪些实际应用?

总结

百度百科+维基百科


卷积层负责提取图像中的局部特征;

池化层用来大幅降低参数量级(降维);

全连接层类似传统神经网络的部分,用来输出想要的结果。

卷积神经网络 – CNN

卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。

CNN 有2大特点:

  1. 能够有效的将大数据量的图片降维成小数据量
  2. 能够有效的保留图片特征,符合图片处理的原则

目前 CNN 已经得到了广泛的应用,比如:人脸识别、自动驾驶、美图秀秀、安防等很多领域。

CNN 解决了什么问题?

在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:

  1. 图像需要处理的数据量太大,导致成本很高,效率很低
  2. 图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高

需要处理的数据量太大

图像是由像素构成的,每个像素又是由颜色构成的。

图像是由像素构成的,每个像素又是由颜色构成的

现在随随便便一张图片都是 1000×1000 像素以上的, 每个像素都有RGB 3个参数来表示颜色信息。

假如我们处理一张 1000×1000 像素的图片,我们就需要处理3百万个参数!

1000×1000×3=3,000,000

这么大量的数据处理起来是非常消耗资源的,而且这只是一张不算太大的图片!

卷积神经网络 – CNN 解决的第一个问题就是“将复杂问题简化”,把大量参数降维成少量参数,再做处理。

更重要的是:我们在大部分场景下,降维并不会影响结果。比如1000像素的图片缩小成200像素,并不影响肉眼认出来图片中是一只猫还是一只狗,机器也是如此。

保留图像特征

图片数字化的传统方式我们简化一下,就类似下图的过程:

图像简单数字化无法保留图像特征

假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从视觉的角度来看,图像的内容(本质)并没有发生变化,只是位置发生了变化

所以当我们移动图像中的物体,用传统的方式的得出来的参数会差异很大!这是不符合图像处理的要求的。

而 CNN 解决了这个问题,他用类似视觉的方式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。

那么卷积神经网络是如何实现的呢?在我们了解 CNN 原理之前,先来看看人类的视觉原理是什么?

人类的视觉原理

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。

1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”,可视皮层是分级的。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。下面是人脑进行人脸识别的一个示例:

人类视觉原理1

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

人类视觉原理2

我们可以看到,在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),

到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

那么我们可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,

较低层的识别初级的图像特征,若干底层特征组成更上一层特征,

最终通过多个层级的组合,最终在顶层做出分类呢?

答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

卷积神经网络-CNN 的基本原理

典型的 CNN 由3个部分构成:

  1. 卷积层
  2. 池化层
  3. 全连接层

如果简单来描述的话:

卷积层负责提取图像中的局部特征;

池化层用来大幅降低参数量级(降维);

全连接层类似传统神经网络的部分,用来输出想要的结果。

典型的 CNN 由3个部分构成

卷积——提取特征

卷积层的运算过程如下图,用一个卷积核扫完整张图片:

卷积层运算过程

这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。

在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。

如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是25种不同的卷积核的示例:

25种不同的卷积核

总结:卷积层的通过卷积核的过滤提取出图片中局部的特征,跟上面提到的人类视觉的特征提取类似。

池化层(下采样)——数据降维,避免过拟合

池化层简单说就是下采样,他可以大大降低数据的维度。其过程如下:

池化层过程

上图中,我们可以看到,原始图片是20×20的,我们对其进行下采样,采样窗口为10×10,最终将其下采样成为一个2×2大小的特征图。

之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。

总结:池化层相比卷积层可以更有效的降低数据维度,这么做不但可以大大减少运算量,还可以有效的避免过拟合。

全连接层——输出结果

这个部分就是最后一步了,经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。

经过卷积层和池化层降维过的数据,全连接层才能”跑得动”,不然数据量太大,计算成本高,效率低下。

全连接层

典型的 CNN 并非只是上面提到的3层结构,而是多层结构,例如 LeNet-5 的结构就如下图所示:

卷积层 – 池化层- 卷积层 – 池化层 – 卷积层 – 全连接层

LeNet-5网络结构

在了解了 CNN 的基本原理后,我们重点说一下 CNN 的实际应用有哪些。

CNN 有哪些实际应用?

卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。下面给大家列一些比较成熟的应用:

图像分类、检索

图像分类是比较基础的应用,他可以节省大量的人工成本,将图像进行有效的分类。对于一些特定领域的图片,分类的准确率可以达到 95%+,已经算是一个可用性很高的应用了。

典型场景:图像搜索…

CNN应用-图像分类、检索

目标定位检测

可以在图像中定位目标,并确定目标的位置及大小。

典型场景:自动驾驶、安防、医疗…

CNN应用-目标

目标分割

简单理解就是一个像素级的分类。

他可以对前景和背景进行像素级的区分、再高级一点还可以识别出目标并且对目标进行分类。

典型场景:美图秀秀、视频后期加工、图像生成…

CNN应用-目标分割

人脸识别

人脸识别已经是一个非常普及的应用了,在很多领域都有广泛的应用。

典型场景:安防、金融、生活…

CNN应用-人脸识别

骨骼识别

骨骼识别是可以识别身体的关键骨骼,以及追踪骨骼的动作。

典型场景:安防、电影、图像视频生成、游戏…

CNN应用-骨骼识别

总结

今天我们介绍了 CNN 的价值、基本原理和应用场景,简单总结如下:

CNN 的价值:

  1. 能够将大数据量的图片有效的降维成小数据量(并不影响结果)
  2. 能够保留图片的特征,类似人类的视觉原理

CNN 的基本原理:

  1. 卷积层 – 主要作用是保留图片的特征
  2. 池化层 – 主要作用是把数据降维,可以有效的避免过拟合
  3. 全连接层 – 根据不同任务输出我们想要的结果

CNN 的实际应用:

  1. 图片分类、检索
  2. 目标定位检测
  3. 目标分割
  4. 人脸识别
  5. 骨骼识别

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。由于卷积神经网络能够进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)” 。

对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络;在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被大量应用于计算机视觉、自然语言处理等领域 。

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。

CNN使用多层感知器的变体设计,需要最少的预处理。它们也被称为移位不变或空间不变人工神经网络(SIANN),基于它们的共享权重架构和平移不变性特征。卷积网络被启发由生物工艺在之间的连接图案的神经元类似于动物的组织视觉皮层。个体皮层神经元仅在被称为感受野的视野的受限区域中对刺激作出反应。不同神经元的感受野部分重叠,使得它们覆盖整个视野。

与其他图像分类算法相比,CNN使用相对较少的预处理。这意味着网络学习传统算法中手工设计的过滤器。这种与特征设计中的先前知识和人力的独立性是一个主要优点。

它们可用于图像和视频识别,推荐系统,图像分类,医学图像分析和自然语言处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/91293.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VR法治警示教育:情景式课堂增强教育效果

VR法治警示教育平台是一款基于虚拟现实技术的在线教育平台,旨在通过模拟真实场景和互动体验,向公众普及法律知识,提高公民的法律意识和素养。该平台采用先进的虚拟现实技术,将用户带入一个逼真的仿真环境,让用户身临其…

小程序input的placeholder不垂直居中的问题解决

input的placeholder不垂直居中&#xff0c;input设置高度后&#xff0c;使用line-height只能使输入的文字垂直居中&#xff0c;但是placeholder不会居中&#xff0c;反而会偏上。 首先placeholder样式自定义 有两种方法&#xff0c;第一种行内样式&#xff1a; <input ty…

​LeetCode解法汇总5-正则表达式匹配​

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a; 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 描述&#xff1a; 给你一棵…

Redis三种特殊数据类型

Redis三种特殊数据类型 geospatial 地理位置 Redis 地理空间数据类型简介 Redis 地理空间索引允许您存储坐标并搜索它们。 此数据结构可用于查找给定半径或边界框内的邻近点。 基本命令 GEOADD 将位置添加到给定的地理空间索引&#xff08;请注意&#xff0c;使用此命令&a…

常见的时序数据库

1.概念 时序数据库全称为时间序列数据库。时间序列数据库指主要用于处理带时间标签&#xff08;按照时间的顺序变化&#xff0c;即时间序列化&#xff09;的数据&#xff0c;带时间标签的数据也称为时间序列数据。 时间序列数据主要由电力行业、化工行业、气象行业、地理信息…

基于MATLAB的径向基函数插值(RBF插值)(一维、二维、三维)

基于MATLAB的径向基函数插值&#xff08;RBF插值&#xff09;&#xff08;一维、二维、三维&#xff09; 0 前言1 RBF思路2 1维RBF函数2.1 参数说明2.1.1 核函数选择2.1.2 作用半径2.1.3 多项式拟合2.1.4 误差项&#xff08;光滑项&#xff09; 3 2维RBF函数4 3维RBF函数 惯例声…

玩转git第7章节,本地git的用户名和密码的修改

一 本地git的用户名和密码 1.1 本地用户名和密码修改 1.本地用户名修改 2.凭据管理 3.进行修改密码 1.2 代码提交操作

python爬虫的js逆向入门到进阶教程文章分享汇总~持续更新

目录 一、内容介绍二 、专栏内容-持续更新1、JS逆向入门2、Js逆向进阶3、爬虫基础知识4、工具与安装5、漫星内容分享 三、星球使用四、b站up主视频推荐 一、内容介绍 二 、专栏内容-持续更新 1、JS逆向入门 2023-08-25》11.常见加密>xx音乐RSA加密 https://articles.zsxq.c…

【C++】list类的模拟实现

&#x1f3d6;️作者&#xff1a;malloc不出对象 ⛺专栏&#xff1a;C的学习之路 &#x1f466;个人简介&#xff1a;一名双非本科院校大二在读的科班编程菜鸟&#xff0c;努力编程只为赶上各位大佬的步伐&#x1f648;&#x1f648; 目录 前言一、list类的模拟实现1.1 list的…

virtuoso61x中集成calibre

以virtuoso618为例&#xff0c;在搭建完电路、完成前仿工作之后绘制版图&#xff0c;版图绘制完成之后需要进行drc和lvs【仅对于学校内部通常的模拟后端流程而言】&#xff0c;一般采用mentor的calibre来完成drc和lvs。 服务器上安装有virtuoso和calibre&#xff0c;但是打开la…

探讨uniapp的路由与页面栈及参数传递问题

1首先引入页面栈 框架以栈的形式管理当前所有页面&#xff0c; 当发生路由切换的时候&#xff0c;页面栈的表现如下&#xff1a; 页面的路由操作无非&#xff1a;初始化、打开新页面、页面重定向、页面返回、tab切换、重加载。 2页面路由 uni-app 有两种页面路由跳转方式&am…

安装搭建私有仓库 Harbor

1&#xff0c;搭建Harbor时需要安装docker compose工具 wget https://storage.googleapis.com/harbor-releases/release- 1.7.0/harbor-offline-installer-v1.7.1.tgz在github下载Harbor最新版&#xff08;第一个&#xff09; 解压文件到 /usr/local tar xf harbor-offline-i…

Spring Boot多环境指定yml或者properties

Spring Boot多环境指定yml或者properties 文章目录 Spring Boot多环境指定yml或者properties加载顺序配置指定某个yml 加载顺序 ● application-local.properties ● application.properties ● application-local.yml ● application.yml application.propertes server.port…

Redis从基础到进阶篇(二)----内存模型与内存优化

目录 一、缓存通识 1.1 ⽆处不在的缓存 1.2 多级缓存 &#xff08;重点&#xff09; 二、Redis简介 2.1 什么是Redis 2.2 Redis的应用场景 三、Redis数据存储的细节 3.1 Redis数据类型 3.2 内存结构 3.3 内存分配器 3.4 redisObject 3.4.1 type 3.4.2 encoding 3…

[论文阅读笔记26]Tracking Everything Everywhere All at Once

论文地址: 论文 代码地址: 代码 这是一篇效果极好的像素级跟踪的文章, 发表在ICCV2023, 可以非常好的应对遮挡等情形, 其根本的方法在于将2D点投影到一个伪3D(quasi-3D)空间, 然后再映射回去, 就可以在其他帧中得到稳定跟踪. 这篇文章的方法不是很好理解, 代码也刚开源, 做一…

设计模式--单例模式(Singleton Pattern)

一、什么是单例模式 单例模式是一种创建型设计模式&#xff0c;它旨在确保一个类只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。换句话说&#xff0c;单例模式限制了类的实例化次数为一个&#xff0c;并提供一种在应用程序中共享一个实例的方式。这对于需要只有…

一个简单的web应用程序的创建

一个简单的web应用程序的创建 1、数据库设计与创建1.1、数据库系统1.2、Navicat Premium1.3、Power Designer2、使用maven创建SpringBoot项目2.1、配置maven2.2、安装idea2.3、使用idea创建maven项目2.4、根据需要配置pom.xml文件、配置项目启动相关的文件2.5、写SpringBoot项目…

React入门 组件学习笔记

项目页面以组件形式层层搭起来&#xff0c;组件提高复用性&#xff0c;可维护性 目录 一、函数组件 二、类组件 三、 组件的事件绑定 四、获取事件对象 五、事件绑定传递额外参数 六、组件状态 初始化状态 读取状态 修改状态 七、组件-状态修改counter案例 八、this问…

Jmeter 接口测试总结

背景介绍 对于 Android 项目来说&#xff0c;使用的是 Java 开发&#xff0c;网络请求接口的数量庞大且复杂&#xff0c;测试人员无法很直观的判断、得出网络请求是否存在问题。另一方面&#xff0c;为了验证请求接口是否能够在大负荷条件下&#xff0c;长时间、稳定、正常的运…

3d max插件CG MAGIC中的蜂窝材质功能可提升效率吗?

工作中能提升效率也都是大家所想的&#xff0c;对于设计师的一个设计过程中&#xff0c;可能想怎么样可以更快呀&#xff0c;是哪个步骤慢了呢&#xff1f; 这样的结果只能说会很多&#xff0c;但是建模这个步骤&#xff0c;肯定是有多无少的。 为了让模型更加逼真&#xff0c…