遇到 Binder这些面试题,你会怎么答?

作为开发人员,每个人都有每个人擅长领域,自然也有自己不擅长的领域,很难成为完美的一个全栈开发。在面试中最怕遇见的一件事是面试官专挑你不擅长的领域进行提问,目的就是看你遇到问题的应变能力。

接下给大家分享一个面试中容易被问道知识点:“说说你对 binder 驱动的了解”,这个问题虽有些 “面试造火箭” 的无奈,可难点也是亮点、体现价值所在,是筛选面试者有效手段。如果让你回答,你能说出多少呢?我们来分别来看看A、B、C三位同学的回答如何吧!

A同学 :自认为无所不知,水平已达应用开发天花板,目前月薪 10k

面试官️:说说你对 binder 驱动的了解

A:binder 驱动是很底层的东西,在系统内核中,是 binder 机制的基石。

面试官:没了吗?把你了解的都说一下

A:直接让我说了解不好回答啊,还是问我问题吧

面试官:好,你刚才提到了系统内核,那介绍一下用户空间和内核空间吧

A:不知道,这东西了解了也没什么用啊!我对业务开发 API 比较了解,比如 RecycleView 布局,我写的贼溜~

面试官:好的,回去等通知吧

B 同学: 业余时间经常打游戏、追剧、熬夜,目前月薪 15k

面试官:说说你对 binder 驱动的了解

B:binder 机制分为四部分,binder 驱动、Service Manager、客户端、服务端。类比网络通信,Service Manager 是 DNS,binder 驱动就是路由器,它运行在内核空间,不同进程间通过 binder 驱动才能通信。

面试官:为什么 binder 驱动要运行在内核空间?可以移到用户空间吗?

B:不行,两个进程的进程空间有不同的虚拟地址映射规则,内存是不共享的,无法直接通信。Linux 把进程空间划分为用户空间和内核空间,分别运行用户程序和系统内核。

用户空间和内核空间虽也是隔离的,但可以通过 copy_from_user 将数据从用户空间拷贝到内核空间,通过 copy_to_user 将数据从内核空间拷贝到用户空间。

所以 binder 驱动要处于内核空间,才能实现两个进程间的通信。一般的 IPC 方式需要分别调用这两个函数,数据就拷贝了两次,而 binder 将内核空间与目标用户空间进行了 mmap,只需调 copy_from_user 拷贝一次即可。

面试官:从用户空间如何调用内核空间的 binder 驱动呢?

B:这个不了解了,我没看过 binder 源码,只是知道大概的通信方式

面试官:那你对 binder 驱动还有哪些了解,都说说吧

B:嗯… 没有了

面试官:好的,回去等通知吧


C 同学: 坚持每天学习、不断的提升自己,目前月薪 30k

面试官:说说你对 binder 驱动的了解

C:简单画张图吧:

对 Binder 机制来说,它是 IPC 通信的路由器,负责实现不同进程间的数据交互,是 Binder 机制的核心;对 Linux 系统来说,它是一个字符驱动设备,运行在内核空间,向上层提供 /dev/binder 设备节点及 open、mmap、ioctl 等系统调用。

面试官:你提到了驱动设备,那先说说 Linux 的驱动设备吧

C:Linux 把所有的硬件访问都抽象为对文件的读写、设置,这一"抽象"的具体实现就是驱动程序。驱动程序充当硬件和软件之间的枢纽,提供了一套标准化的调用,并将这些调用映射为实际硬件设备相关的操作,对应用程序来说隐藏了设备工作的细节。

Linux 驱动设备分为三类,分别是字符设备、块设备和网络设备。字符设备就是能够像字节流文件一样被访问的设备。对字符设备进行读/写操作时,实际硬件的 I/O 操作一般也紧接着发生。字符设备驱动程序通常都会实现 open、close、read 和 write 系统调用,比如显示屏、键盘、串口、LCD、LED 等。

块设备指通过传输数据块(一般为 512 或 1k)来访问的设备,比如硬盘、SD卡、U盘、光盘等。网络设备是能够和其他主机交换数据的设备,比如网卡、蓝牙等设备。

字符设备中有一个比较特殊的 misc 杂项设备,设备号为 10,可以自动生成设备节点。Android 的 Ashmem、Binder 都属于 misc 杂项设备。

面试官:看过 binder 驱动的 open、mmap、ioctl 方法的具体实现吗?

C:它们分别对应于驱动源码 binder.c 中的 binder_open()、binder_mmap()、binder_ioctl() 方法,binder_open() 中主要是创建及初始化 binder_proc ,binder_proc 是用来存放 binder 相关数据的结构体,每个进程独有一份。

binder_mmap() 的主要工作是建立应用进程虚拟内存在内核中的一块映射,这样应用程序和内核就拥有了共享的内存空间,为后面的一次拷贝做准备。

binder 驱动并不提供常规的 read()、write() 等文件操作,全部通过 binder_ioctl() 实现,所以 binder_ioctl() 是 binder 驱动中工作量最大的一个,它承担了 binder 驱动的大部分业务。

面试官:仅 binder_ioctl() 一个方法是怎么实现大部分业务的?

C:binder 机制将业务细分为不同的命令,调用 binder_ioctl() 时传入具体的命令来区分业务,比如有读写数据的 BINDER_WRITE_READ 命令、 Service Manager 专用的注册为 DNS 的命令等等。

BINDER_WRITE_READ 命令最为关键,其细分了一些子命令,比如 BC_TRANSACTION、BC_REPLY 等。BC_TRANSACTION 就是上层最常用的 IPC 调用命令了,AIDL 接口的 transact 方法就是这个命令。

面试官:binder 驱动中要实现这些业务功能,必然要用一些数据结构来存放相关数据,比如你上面说 binder_open() 方法时提到的 binder_proc,你还知道其他的结构体吗?

C:知道一些,比如:

结构体说明
binder_proc描述使用 binder 的进程,当调用 binder_open 函数时会创建
binder_thread描述使用 binder 的线程,当调用 binder_ioctl 函数时会创建
binder_node描述 binder 实体节点,对应于一个 serve,即用户态的 BpBinder 对象
binder_ref描述对 binder 实体节点的引用,关联到一个 binder_node
binder_buffer描述 binder 通信过程中存储数据的Buffer
binder_work描述一个 binder 任务
binder_transaction描述一次 binder 任务相关的数据信息
binder_ref_death描述 binder_node 即 binder server 的死亡信息

其中主要结构体引用关系如下:

面试官:可以,我们再来聊聊别的。

如果你被问到了这些问题,你会怎么答呢?

如果你还没有掌握 Binder,现在想要在最短的时间里吃透它,可以参考一下《Android Framework核心知识点》,里面内容包含了:Init、Zygote、SystemServer、Binder、Handler、AMS、PMS、Launcher……等知识点记录。

《Framework 核心知识点汇总手册》:https://qr18.cn/AQpN4J

Handler 机制实现原理部分:
1.宏观理论分析与Message源码分析
2.MessageQueue的源码分析
3.Looper的源码分析
4.handler的源码分析
5.总结

Binder 原理:
1.学习Binder前必须要了解的知识点
2.ServiceManager中的Binder机制
3.系统服务的注册过程
4.ServiceManager的启动过程
5.系统服务的获取过程
6.Java Binder的初始化
7.Java Binder中系统服务的注册过程

Zygote :

  1. Android系统的启动过程及Zygote的启动过程
  2. 应用进程的启动过程

AMS源码分析 :

  1. Activity生命周期管理
  2. onActivityResult执行过程
  3. AMS中Activity栈管理详解

深入PMS源码:

1.PMS的启动过程和执行流程
2.APK的安装和卸载源码分析
3.PMS中intent-filter的匹配架构

WMS:
1.WMS的诞生
2.WMS的重要成员和Window的添加过程
3.Window的删除过程

《Android Framework学习手册》:https://qr18.cn/AQpN4J

  1. 开机Init 进程
  2. 开机启动 Zygote 进程
  3. 开机启动 SystemServer 进程
  4. Binder 驱动
  5. AMS 的启动过程
  6. PMS 的启动过程
  7. Launcher 的启动过程
  8. Android 四大组件
  9. Android 系统服务 - Input 事件的分发过程
  10. Android 底层渲染 - 屏幕刷新机制源码分析
  11. Android 源码分析实战

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/96791.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 Netty 实现群聊功能的步骤和注意事项

文章目录 前言声明功能说明实现步骤WebSocket 服务启动Channel 初始化HTTP 请求处理HTTP 页面内容WebSocket 请求处理 效果展示总结 前言 通过之前的文章介绍,我们可以深刻认识到Netty在网络编程领域的卓越表现和强大实力。这篇文章将介绍如何利用 Netty 框架开发一…

报错sql_mode=only_full_group_by

首发博客地址 https://blog.zysicyj.top/ 报错内容 ### The error may exist in file[D:\code\cppCode20221025\leader-system\target\classes\mapper\system\TJsonDataMapper.xml] ### The error may involve defaultParameterMap ### The error occurred while…

Haproxy+Keepalive 整合rabbitmq实现高可用负载均衡

Haproxy 实现负载均衡 HAProxy 提供高可用性、负载均衡及基于 TCPHTTP 应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案,包括 Twitter,Reddit,StackOverflow,GitHub 在内的多家知名互联网公司在使用。HAProxy 实现了一种…

康希诺的再估值:市场到底,行业向上

生物医药是整个二级市场弹性数一数二,但拐点难以揣摩的行业。这一点,美港A三大市场都曾经有过足够多的暴涨暴跌案例可用于佐证。 但很多时候,这种片面的表现又掩盖了生物医药自身的永续价值:在绝大多数细分赛道上,任何…

加密的PDF文件,如何解密?

PDF文件带有打开密码、限制编辑,这两种密码设置了之后如何解密? 不管是打开密码或者是限制编辑,在知道密码的情况下,解密PDF密码,我们只需要在PDF编辑器中打开文件 – 属性 – 安全,将权限状态修改为无保护…

基于金枪鱼群算法优化的BP神经网络(预测应用) - 附代码

基于金枪鱼群算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于金枪鱼群算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.金枪鱼群优化BP神经网络2.1 BP神经网络参数设置2.2 金枪鱼群算法应用 4.测试结果:5…

链表(详解)

一、链表 1.1、什么是链表 1、链表是物理存储单元上非连续的、非顺序的存储结构,数据元素的逻辑顺序是通过链表的指针地址实现,有一系列结点(地址)组成,结点可动态的生成。 2、结点包括两个部分:&#x…

Fedora Linux 的家族(一):官方版本

导读本文将对 Fedora Linux 官方版本进行更详细的介绍。共有五个 版本: Fedora Workstation、Fedora Server、Fedora IoT、Fedora CoreOS 和 Fedora Silverblue。Fedora Linux 下载页面目前显示其中三个为 官方 版本,另外两个为 新兴 版本。本文将涵盖所…

js的this指向问题

代码一: 这段代码定义了run函数、obj对象,然后我们把run函数作为obj的方法。 function run(){console.log(this);}let obj{a:1,b:2};obj.runrun;obj.run(); 那么我们调用obj的run方法,那么这个方法打印的this指向obj。 分析:即…

【javaweb】学习日记Day4 - Maven 依赖管理 Web入门

目录 一、Maven入门 - 管理和构建java项目的工具 1、IDEA如何构建Maven项目 2、Maven 坐标 (1)定义 (2)主要组成 3、IDEA如何导入和删除项目 二、Maven - 依赖管理 1、依赖配置 2、依赖传递 (1)查…

11. 盛最多水的容器(c++题解)

11. 盛最多水的容器(c题解) 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大…

分享一种针对uni-app相对通用的抓包方案

PART1,前言 近年来混合开发APP逐渐成为主流的开发模式,与传统的开发模式相比混合开发极大的提升了开发效率,同时跨平台的特性也降低了开发成本,一直以来混合开发被诟病的性能问题随着技术的发展也得到改善。技术的发展往往是一把…

HPC是如何助力AI推理加速的?

高性能计算(High-Performance Computing,HPC)通过提供强大的计算能力、存储资源和网络互联,可以显著地辅助人工智能(AI)应用更快地进行训练和推断。那么,HPC是如何助力AI推理加速的?…

多线程学习之线程池

线程状态 线程状态具体含义NEW一个尚未启动的线程的状态。也称之为初始、开始状态。线程刚被创建,但是并未启动。还没调用start方法。MyThread t new MyThread()只有线程对象,没有线程特征。RUNNABLE当我们调用线程对象的start方法,那么此时…

Java线程 - 详解(2)

一,线程安全问题 有些代码在单个线程的环境下运行,完全正确,但是同样的代码,让多个线程去执行,此时就可能出现BUG,这就是所谓的 "线程安全问题"。举一个例子: public class Demo {s…

python的可哈希对象

一、介绍 在Python中,可哈希(hashable)是指一种对象类型,该类型的对象可以用作字典的键(keys)或集合(sets)的元素。可哈希的对象具有以下特点: 不可变性(Imm…

使用Linux部署Kafka教程

目录 一、部署Zookeeper 1 拉取Zookeeper镜像 2 运行Zookeeper 二、部署Kafka 1 拉取Kafka镜像 2 运行Kafka 三、验证是否部署成功 1 进入到kafka容器中 2 创建topic 生产者 3 生产者发送消息 4 消费者消费消息 四、搭建kafka管理平台 五、SpringBoot整合Kafka 1…

natApp内网穿透工作原理

如图所示,用户启动内网穿透工具会将token传入natapp服务器与我们自己的主机建立一个类似于websocket的长链接,当从外网访问我们主机的接口时,会进行一个本地接口地址的截取,然后进行拼接成我们主机应用的真实地址。然后将数据返回…

k-近邻算法概述,k-means与k-NN的区别对比

目录 k-近邻算法概述 k-近邻算法细节 k值的选取 分类器的决策 k-means与k-NN的区别对比 k-近邻算法概述 k近邻(k-nearest neighbor, k-NN)算法由 Cover 和 Hart 于1968年提出,是一种简单的分类方法。通俗来说,就是给定一个…
最新文章