高速公路自动驾驶汽车超车控制方法研究

目录
摘要 ............................................................................................................ I
Abstract ...................................................................................................... II
目录 ......................................................................................................... IV
第1 章 引言 ........................................................................................... 1
1.1 研究背景及意义 .......................................................................................... 1
1.2 国内外研究现状 .......................................................................................... 2
1.3 自动驾驶汽车超车控制方法研究现状 ...................................................... 5
1.4 研究内容与技术路线 .................................................................................. 9
第2 章 自动驾驶汽车超车行为决策机制研究 ................................. 12
2.1 自动驾驶汽车基于高速公路环境的系统框架 ........................................ 12
2.2 自动驾驶超车行为决策框架 .................................................................... 14
2.3 基于有限状态机的超车行为建模 ............................................................ 16
2.4 本章小结 .................................................................................................... 19
第3 章 自动驾驶汽车超车轨迹规划 ................................................. 20
3.1 超车行为特性研究 .................................................................................... 20
3.2 自动驾驶汽车换道安全距离 .................................................................... 21
3.3 车辆换道运动轨迹规划 ............................................................................ 25
3.4 超车运动轨迹规划 .................................................................................... 34
3.5 本章小结 .................................................................................................... 37
第4 章 自动驾驶汽车换道超车轨迹跟踪 ......................................... 38
4.1 模型预测控制简介 .................................................................................... 38
4.2 自动驾驶汽车动力学模型建立 ................................................................ 40
4.3 基于模型预测控制的轨迹跟踪器设计 .................................................... 42
4.4 自动驾驶汽车轨迹跟踪仿真实验 ............................................................ 46
4.5 本章小结 .................................................................................................... 52
第5 章 自动驾驶汽车超车方法验证 ................................................. 53
5.1 自动驾驶汽车超车模型搭建 .................................................................... 53
5.2 超车结果分析 ............................................................................................ 56
5.3 本章小结 .................................................................................................... 59

第6 章 结论 ......................................................................................... 60
6.1 研究总结 .................................................................................................... 60
6.2 研究展望 .................................................................................................... 61
致谢 ......................................................................................................... 62
参考文献 ................................................................................................. 63
攻读学位期间获得与学位论文相关的科研成果 ................................. 67

第1 章 引言
1.1 研究背景及意义
汽车发展改变人的生活。自1885 年德国工程师卡尔奔驰发明第一辆汽油发动机汽车,1913 年美国福特公司大批量生产汽车,汽车业经历一个多世纪的发展,逐步形成如今的精细化生产——在模块化通用平台上实现跨车型跨级别规模生产,包括从车体架构到汽车功能模块划分、标准设计、个性化定制、柔性制造、灵活组装和敏捷生产。汽车制造业的核心竞争力从19 世纪的底盘、轮胎、机械、传动、车身,发展到20 世纪的发动机、能源排放、电气、被动安全,到如今的模块化、汽车电子、主动安全、智能驾驶。在互联网、人工智能等产业飞速发展的背景下,电子信息技术正在挑战脱离驾驶员驾驶汽车的状态,自动驾驶汽车技术可减少安全事故、缓解驾驶员疲劳,可望改变整个汽车工业和改善交通状况。
国内外科研机构早在上世纪就开始了自动驾驶技术的研究。从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行自动驾驶研发。近年来,各大企业争相参与自动驾驶技术的研究,并陆续开展了路测试验,推动自动驾驶技术迅猛发展。我国自动驾驶技术研发稍晚,1992 年国防科技大学成功研制出中国第一辆真正意义上的无人自动驾驶汽车,2005 年上海交通大学成功研制首辆城市自动驾驶汽车。
自动驾驶汽车技术涉及人工智能、车辆工程、自动控制、机器视觉等多学科交叉研究。其利用摄像头、雷达、导航系统等多传感器感知车辆所处交通环境,自动规划出一条安全可靠的行驶轨迹,实现自动驾驶汽车在道路上自主行驶。超车是一种常见的驾驶行为,是指在同一车道上,后车为最求更快的行驶速度、更大的行驶空间及更短的行驶时间,从前车侧向超越前车并回到本车道的行为。超车作为一种比较复杂的驾驶行为,存在巨大的安全隐患。自动驾驶汽车超车技术通过采集与分析大量数据,包括车辆行车速度、位置、周围环境等,能更好替代驾驶员进行更为安全的超车决策与控制,以减少车辆超车过程中发生交通事故的风险,也能同时兼顾车辆平顺性,给乘客更舒适的超车体验。自动驾驶汽车超车技术研究在实现无人驾驶这一目标的过程中不可或缺,具有重要意义。

1.2 国内外研究现状
1.2.1 国外自动驾驶汽车研究现状
20 世纪80 年代,卡内基·梅隆大学、斯坦福大学、麻省理工学院等美国著名大学与一些科研机构开始自动驾驶汽车的研究。1984 年,美国国防研究计划局(The Defense Advanced Research Project Agency, DARPA)发布“星球大战”战略计划,旨在将超级计算机技术与人工智能技术应用于军事之中,图1-1 为三届DARPA 挑战赛冠军车辆,分别是Sandstorm、Stanley、Boss。同时期,美国交通部(United States Department of Transportation)成立了自动高速公路系统计划(AHS, Automated Highway System),该项目参与者有美国通用公司、伯克利大学与卡耐基梅隆大学。

作为AHS 计划的主要参与者,卡耐基梅隆大学研制出NavLab 系列车辆,图1-2 为NavLab-5 自动驾驶汽车。1995 年智能汽车NavLab-5 完成从匹兹堡到圣地亚哥4585 公里的智能驾驶路测,试验过程中,车辆自主控制方向盘约占总里程98.2%。1987 年,欧洲发起普罗米修斯项目(PROMETHEUS, Programme fora European Traffic of Highest Efficiency and Unprecedented Safety)。该项目由著名大学慕尼黑联邦防军大学、著名企业宝马、奔驰为主要参与者,该项目组于1994年研发智能驾驶汽车VaMP 和VITA-2,并混入高速公路正常车流中行驶,车辆最高时速达130km/h,试验过程中演示了巡线、编队、跟踪、换道超车行驶等项目。相较NavLab-5 加入了方向盘、油门、刹车协同控制。1996 年,意大利帕尔马大学视觉实验室创建ARGO 项目组,该项目逐一利用计算机视觉识别车道标线,进而控制车辆行驶。图1-3 为ARGO 自动驾驶汽车。2010 年,ARGO 试验车沿马可波罗路线,自动驾驶到中国参加上海世博会,总行程15926 公里。 

1.2.2 国内自动驾驶汽车研究现状
国内最早开始自动驾驶汽车领域研究的是高等院校。高等院校一方面积极与汽车企业合作,理清从实验室走向产品产业化的实现路径,另一方面在院校内部进行相关技术与产品的孵化。
20 世纪80 年代末,中国各大著名高校,其中包括国防科技大学、清华大学等联合研制出我国第一辆自动驾驶车辆ATB-1(Autonomous Test Bed)。20 世纪90 年代中期,清华大学成立智能汽车研发团队。清华大学李克强教授提出智能汽车发展正往智能化与网联化两个方向发展,前者通过车辆配置传感器感知外部环境,完成“孤岛式”自动驾驶,后者通过车车通信,基础设施信息交换,实
现网联下自动驾驶。两个发展方向都以解放人类双手为最终目标,且最终相互结合成为“智能网联汽车”。智能汽车研发团队与企业合作过程中,主要负责提供系统、基础算法框架,并围绕框架的具体细节与实际行车环境考虑优化。同济大学和上汽集团牵头成立智能型新能源汽车协同创新中心,致力于帮助可以项目产品化。同济大学针对上汽集团的产品规划与行业趋势做探索性基础研究,上汽集团前瞻部则致力于技术产品化。对于智能网联汽车这个跨学科系统工程,协同创新中心将各个学院师生,包括汽车学院、软件学院、电信学院、交通学院、测绘学院,发挥各自优势协同完成项目。2003 年,国防科技大学与一汽集团共同研发红旗CA7460 智能驾驶车辆,在功能上实现自动超车,2006 年研发的第二代智能驾驶汽车HQ3具备自适应巡航、碰撞预警、车道线跟踪等技术,控制精度和稳定性都较第一代有所提高。
中国本土汽车企业响应国家号召,开始参与自动驾驶技术研发。2018 年4月,奇瑞发布“雄狮LION”智能化品牌,该品牌是“124”战略的升级,涉及研发、制造、产品、营销、服务等方面,包括自动驾驶、智能互联、智慧制造、数字营销、移动出行这五个基本点,企图分四个阶段完成完全自动驾驶:2006 年Level1 驾驶辅助、2018 年Level 2 级部分自动驾驶、2020 年Level 3 级有条件自动驾
驶、2025 年Level 4/Level 5 级全自动驾驶。上汽集团在“十三五”规划提出技术“新四化”:电动化、网络化、智能化和共享化,且逐渐形成智能网联汽车自主研发体系,为未来产品业务拓展奠定基础。2015 年,上汽表示将在五年内实现结构化与部分非机构道路自动驾驶,10 年内实现全环境自动驾驶。其自动驾驶技术基于Level 3 级智能车为起点,围绕车辆智能化,多车协作两个主线推进技术发展。2016 年,长安汽车制定“654 战略”,针对智能化板块搭建六大平台(电子电器平台、环境感知与执行平台、决策平台、软件平台、环境测试平台、标准法规平台)、五大核心技术(自动泊车技术、自适应巡航技术、智能网络技术、HMI交互技术)和四阶段实现无人驾驶。

百度公司作为互联网公司,也对智能汽车进行了系统研究,其涉及领域有车联网、高精度地图及自动驾驶软件与算法的开发。百度对智能汽车的研究分为车联网和自动驾驶两个分支。2017 年,百度公司独立出自动驾驶事业部(Level 4),并宣布自动驾驶商业化开源的“Apollo 计划”。

1.3 自动驾驶汽车超车控制方法研究现状
车辆超车是一种常见的驾驶行为,指后方车辆为寻求更快的驾驶速度和更大的驾驶空间,超越前车的驾驶行为。自动驾驶汽车超车是根据周围环境,判断是否符合超车条件,合理规划超车轨迹,然后根据车辆当前姿态、车速信息决策,输出方向盘转角信号,完成超车行为。超车过程涉及换道超车决策、换道超车轨迹规划、换道超车轨迹跟踪等任务。
1.3.1 换道超车行为决策研究现状
早期国内外对驾驶行为决策的研究多停留在仿真阶段,采用的行为逻辑模仿真实的驾驶员驾驶行为习惯。Gipps 是最早对汽车换道行为进行系统研究的,他提出的换道决策模型基于受障碍物、交通指示、重型车辆影响的城郊道路,将决策过程分为换道意图产生、换道条件判断、换道动作执行三个部分,为降低模型复杂度,采用分层决策,使决策符合多方面要求[2]。Hidas 在Gipps 提出的模
型上进行改进,提出SITRAS(Simulation of intelligent Transport Systems)模型,提出间距评估模型,判断换道可行性时基于当前车辆的前后车加减速度是否为可接受,避免本车换道行为对其他交通车产生不利影响[3]。Q.Yang 基于Gipps 的模型框架,提出MITSIM(Microscopic Traffic SIMulator)模型,也是第一个根据环境不同将换道行为分为强制性换道与非强制换道两种,其中对非强制性换道的换道意图产生加入期望车速这一指标。美国联邦公路局提出CORSIM 换道模型,采用两个微观仿真模型,用于不同类型道路,分别是适用于高速道路环境的FRESIM 模型与适用于城市道路环境的NETSIM 模型。FRESIM 模型由动机因素、利益因素和紧急因素组成,NETSIM 模型分为强制性与非强制性两个换道情况,这两个模型建立基于减速度来判断换道时机。

上述模型多将环境简化,并默认所有微观环境信息是可知的,不符合实际情况。且以上模型仅一次考虑驾驶意图,将换道超车行为看做连续动作,未考虑超车行为第二次换道时周围环境是否符合条件。因此,若要构建能应用于自动驾驶汽车的模型,需要更深入的研究。Schubert 等将减速时间作为换道过程决策指标,采用贝叶斯网络评估换道场景和进行换道决策。Wei 等采用预测模型分析动态行车环境,进而辅助车辆在高速公路上完成车道保持或车辆超车等驾驶行为决策,模型采用车辆行驶安全性、舒适性、效率性作为评价指标,且使用成本函数作决策依据,然后用马尔科夫方法提高车辆在不确定行车环境下的驾驶稳定性。Brechtel 等采用马尔科夫方法作为换道决策方法,决策条件采用相对距离、相对速度等可直接测量的物理量,但由于无法预估的系统测量误差,造成决策系统的不稳定性。企业研究方面,宝马基于高速公路研发的自动驾驶ConnectedDrive 项目,Ardelt 等人采用状态机区分不同驾驶行为,并进行分层决策,其中分层决策根据不同的驾驶子任务与驾驶环境定义状态转移条件。
在国内,许多科研机构也对自动驾驶汽车超车行为决策方面进行了深入研究。袁盛玥针对城市环境进行换道规则的研究[9]。Guo M 等基于可行驶区域划分,提出适用于自动驾驶汽车的决策模型,决策模型考虑了其他信息,包括信号灯、周围车辆、行人等[10]。徐优志等基于RBF 神经网络学习真实驾驶员的驾驶特性,得出超车意图产生与判断条件,并基于Prescan 和Matlab/Simulink 搭建仿真实验平台,验证超车决策框架的有效性[11]。

.....需要完整版材料私信

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/98272.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ansible-palybook学习

目录 一.playbook介绍二.playbook格式1.书写格式2.notify介绍 一.playbook介绍 playbook 是 ansible 用于配置,部署,和管理被控节点的剧本。通过 playbook 的详细描述,执行其中的一系列 tasks ,可以让远端主机达到预期的状态。pl…

electron软件安装时,默认选择为全部用户安装

后续可能会用electron开发一些工具,包括不限于快速生成个人小程序、开发辅助学习的交互式软件、帮助运维同学一键部署的简易版CICD工具等等。 开发进度,取决于我懒惰的程度。 不过不嫌弃的同学还是可以先关注一波小程序,真的发布工具了&…

java八股文面试[多线程]——synchronized锁升级过程

速记:偏向-轻量-重量 锁膨胀 上面讲到锁有四种状态,并且会因实际情况进行膨胀升级,其膨胀方向是:无锁——>偏向锁——>轻量级锁——>重量级锁,并且膨胀方向不可逆 一.锁升级理论. 在synchronized锁升级过程…

Qt应用开发(基础篇)——进度条 QProgressBar

一、前言 QProgressBar类继承于QWidget,是一个提供了横向或者纵向进度条的小部件。 QProgressBar进度条一般用来显示用户某操作的进度,比如烧录、导入、导出、下发、上传、加载等这些需要耗时和分包的概念,让用户知道程序还在正常的执行中。 …

web功能测试方法大全—完整!全面!(纯干货,建议收藏哦~)

本文通过六个部分为大家梳理了web功能测试过程中,容易出现的遗漏的部分,用以发掘自己工作中的疏漏。(纯干货,建议收藏哦~) 一、输入框 1、字符型输入框 2、数值型输入框 3、日期型输入框 4、信息重复 在一些需要命名…

做一个蛋糕店小程序需要哪些步骤?

对于一些不懂技术的新手来说,创建蛋糕店小程序可能会感到有些困惑。但是,有了乔拓云平台的帮助,你可以轻松地创建自己的蛋糕店小程序。下面,我将为大家详细介绍一下具体的操作步骤。 首先,登录乔拓云平台并进入后台管理…

使用这个插件,fiddler抓包直接生成httprunner脚本

har2case可以将.har文件转化成yaml格式或者json格式的httprunner的脚本文件,生成.har格式文件可以借助 fiddler 或 Charles 抓包工具 友情提示: 录制脚本,只是一个过渡,从0到1的一个过渡,如果让你直接写脚本&#xf…

保护隐私的第一步:从更新浏览器开始

当今社会已经进入了数字化和网络化的时代,而网络安全问题也日益突显。随着互联网在我们生活中的不断渗透,网络威胁变得愈发普遍和隐蔽。在这样的背景下,网络浏览器作为人们访问互联网的主要工具之一,不仅为我们提供了便捷的上网方…

HTML基础--Form表单--内联元素

目录 Form表单 表单元素 创建表单 () 文本输入 () 密码输入 单选按钮 () 和 复选框 () 下拉列表 () 和 选项 ()提交按钮 () 重置按钮 () 块元素与行内元素&#xff08;内联元素&#xff09; Form表单 HTML中的表单&#xff08;<form>&#xff09;是一个重要的元…

基于流计算 Oceanus(Flink) CDC 做好数据集成场景

由于第一次做实时&#xff0c;所以踩坑比较多&#xff0c;见谅(测试环境用的flink),小公司没有用到hadoop组件 一、踩坑记录 1:本地代码的flink版本是flink1.15.4&#xff0c;生产环境是flink1.16.1&#xff0c;在使用侧输出流时报错&#xff0c;需要使用以下写法,需要使用Si…

计算机毕设之基于python+echarts+mysql的图书馆可视化管理系统(文档+代码+部署教程)

系统阐述的是一款图书馆可视化管理系统的设计与实现&#xff0c;对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计&#xff0c;描述&#xff0c;实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体架构…

Revit SDK:Selections 选择

前言 Revit 作为一款成熟的商业软件&#xff0c;它将自己的UI选择功能也通过 API 暴露出来。通过 API 可以按照特定的过滤规则来选择相应的元素&#xff0c;能力和UI基本上是等价的。这个 SDK 用四个例子展示了 API 的能力&#xff0c;内容如下。 内容 PickforDeletion 核心…

【Docker】网络

文章目录 Docker 网络基础Docker网络管理Docker网络架构CNMLibnetwork驱动 常见的网络类型 Docker 网络管理命令docker network createdocker network inspectdocker network connectdocker network disconnectdocker network prunedocker network rmdocker network ls docker …

Linux —— keepalived

简介 Keepalived 是一个用 C 语言编写的路由软件。这个项目的主要目标是为 Linux 系统和基于 Linux 的基础设施提供简单而强大的负载均衡和高可用性功能。 Keepalived 开源并且免费的软件。 Keepalived 的2大核心功能 1. loadbalance 负载均衡 LB&#xff1a;ipvs--》lvs软件…

zookeeper 3.8.1安装和入门使用

1、zookeeper环境搭建&#xff08;Windows单机版&#xff09; 1.1、 前提 必须安装jdk 1.8&#xff0c;配置jdk环境变量&#xff0c;步骤略 1.2、安装zookeeper 地址&#xff1a;https://zookeeper.apache.org/ 1.2.1、选择releases版本 1.2.2、下载安装包并解压 1.2.3、配…

联想电脑装系统无法按F9后无法从系统盘启动的解决方案

开机时按F9发现没有加载系统盘. 打开BIOS设置界面&#xff0c;调整设置如下: BOOT MODE: Legacy Support.允许legacy方式boot. BOOT PRIORITY: Legacy First. Legacy方式作为首选的boot方式. USB BOOT: ENABLED. 允许以usb方式boot. Legacy: 这里设置legacy boot的优先级,…

进程Start

Linux中的命令解释器和Windows的程序管理器explorer.exe一样地位,都是在用户态下运行的进程 共享变量发生不同进程间的指令交错&#xff0c;就可能会数据出错 进程只作为除CPU之外系统资源的分配单位 CPU的分配单位是线程 每个进程都有自己的独立用户空间 内核空间是OS内核的…

Qt day2

目录 1.多态&#xff0c;虚函数&#xff0c;纯虚函数 1.多态性&#xff08;Polymorphism&#xff09;&#xff1a; 2.虚函数&#xff08;Virtual Function&#xff09;&#xff1a; 3.纯虚函数&#xff08;Pure Virtual Function&#xff09;&#xff1a; 将引用作为函数参…

智能感测棒形静电消除器所具备的特点

智能感测棒形静电消除器是一种具有联网监控功能的设备。它可以通过内置的传感器实时感知周围的静电情况&#xff0c;并采取相应的措施进行消除。 该设备通过联网功能&#xff0c;可以将感测到的静电信息传输到指定的监控平台或手机应用程序中进行实时监控与管理。用户可以随时…

Ansible学习笔记15

1、roles&#xff1a;&#xff08;难点&#xff09; roles介绍&#xff1a; roles&#xff08;角色&#xff09;&#xff1a;就是通过分别将variables&#xff0c;tasks及handlers等放置于单独的目录中&#xff0c;并可以便捷地调用他们的一种机制。 假设我们要写一个playbo…
最新文章