当前位置: 首页 > news >正文

可以拿自己电脑做网站主机购物网站有哪些

可以拿自己电脑做网站主机,购物网站有哪些,广州网络营销推广培训,番号网wordpress模板课程1_第4周_测验题 目录:目录 第一题 1.在我们的前向传播和后向传播实现中使用的 “缓存” 是什么? A. 【  】它用于在训练期间缓存成本函数的中间值。 B. 【  】我们用它将在正向传播过程中计算的变量传递到相应的反向传播步骤。它包含了反向传…

课程1_第4周_测验题

目录:目录

第一题

1.在我们的前向传播和后向传播实现中使用的 “缓存” 是什么?

A. 【  】它用于在训练期间缓存成本函数的中间值。

B. 【  】我们用它将在正向传播过程中计算的变量传递到相应的反向传播步骤。它包含了反向传播计算导数的有用值。

C. 【  】它用于跟踪我们正在搜索的超参数,以加快计算速度。

D. 【  】我们用它将反向传播过程中计算的变量传递到相应的正向传播步骤。它包含用于计算正向传播的激活的有用值。

答案:

B.【 √ 】我们用它传递前向传播中计算的变量到相应的反向传播步骤,它包含用于计算导数的反向传播的有用值。

note:“cache” 记录来自正向传播单元的值并将其发送到反向传播单元,因为需要链式计算导数。

第二题

2.以下哪些是“超参数”?(选出所有正确项)

A. 【  】隐藏层规模 n [ l ] n^{[l]} n[l]

B. 【  】神经网络的层数 L L L

C. 【  】激活向量 a [ l ] a^{[l]} a[l]

D. 【  】权重矩阵 W [ l ] W^{[l]} W[l]

E. 【  】学习率 α \alpha α

F. 【  】迭代次数

G. 【  】偏置向量 b [ l ] b^{[l]} b[l]

答案:

A.【 √ 】隐藏层规模 n [ l ] n^{[l]} n[l]

B.【 √ 】神经网络的层数 L L L

E.【 √ 】学习率 α \alpha α

F.【 √ 】迭代次数

第三题

3.下列哪个说法是正确的?

A. 【  】神经网络的更深层通常比前面的层计算更复杂的特征。

B. 【  】神经网络的前面的层通常比更深层计算更复杂的特性。

答案:

A.【 √ 】神经网络的更深层通常比前面的层计算更复杂的输入特征。

第四题

4.向量化允许您在L层神经网络中计算前向传播时,不需要在层l = 1, 2, …, L间显式的使用for循环(或任何其他显式迭代循环),正确吗?

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

note:在层间计算中,我们不能避免for循环迭代。

第五题

5.假设我们将 n [ l ] n ^ {[l]} n[l]的值存储在名为layers的数组中,如下所示:layer_dims = [n_x, 4, 3, 2, 1]。 因此,第1层有4个隐藏单元,第2层有3个隐藏单元,依此类推。 您可以使用哪个for循环初始化模型参数?

for(i in range(1, len(layer_dims/2))):parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01
for(i in range(1, len(layer_dims/2))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i-1], layers[i]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01
for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01

答案:

D.【 √ 】

for(i in range(1, len(layer_dims))):  parameter[‘W’ + str(i)] = np.random.randn(layers[i], layers[i-1]) * 0.01  parameter[‘b’ + str(i)] = np.random.randn(layers[i], 1) * 0.01

Note:矩阵运算,W矩阵与X特征向量相乘,W矩阵的列数与X特征向量的个数相等。

第六题

6.考虑以下神经网络,该神经网络有几层?
在这里插入图片描述

A. 【  】L层数是4,隐藏层数是3

B. 【  】L层数是3,隐藏层数是3

C. 【  】L层数是4,隐藏层数是4

D. 【  】L层数是5,隐藏层数是4

答案:

A.【 √ 】层数L为4,隐藏层数为3。

note:正如图中所看到的那样,层数被计为隐藏层数+1。输入层和输出层不计为隐藏层。

第七题

7.在前向传播期间,在层 l l l的前向传播函数中,您需要知道层 l l l中的激活函数(Sigmoid,tanh,ReLU等)是什么。在反向传播期间,相应的反向传播函数也需要知道第 l l l层的激活函数是什么,因为梯度是根据它来计算的。

A. 【  】对

B. 【  】不对

答案:

A.【 √ 】对

note:在反向传播期间,您需要知道正向传播中使用哪种激活函数才能计算正确的导数。

第八题

8.有一些函数具有以下特性:

(i) 当使用浅网络计算时,需要一个大网络(我们通过网络中的逻辑门数量来度量大小)。

(ii) 但是当使用深网络来计算时,我们只需要一个指数级小的网络。

A. 【  】对
B. 【  】不对

答案:

A.【 √ 】对

第九题

9.在以下2层隐藏层的神经网络中,以下哪句话是正确的?
在这里插入图片描述

A. 【  】 W [ 1 ] W^{[1]} W[1]的形状是 (4, 4)

B. 【  】 b [ 1 ] b^{[1]} b[1]的形状是 (4, 1)

C. 【  】 W [ 2 ] W^{[2]} W[2]的形状是 (3, 4)

D. 【  】 b [ 2 ] b^{[2]} b[2]的形状是 (3, 1)

E. 【  】 b [ 3 ] b^{[3]} b[3]的形状是 (1, 1)

F. 【  】 W [ 3 ] W^{[3]} W[3]的形状是 (1, 3)

答案:

A.【 √ 】 W [ 1 ] W^{[1]} W[1]的形状是 (4, 4)

B.【 √ 】 b [ 1 ] b^{[1]} b[1]的形状是 (4, 1)

C.【 √ 】 W [ 2 ] W^{[2]} W[2]的形状是 (3, 4)

D.【 √ 】 b [ 2 ] b^{[2]} b[2]的形状是 (3, 1)

E.【 √ 】 b [ 3 ] b^{[3]} b[3]的形状是 (1, 1)

F.【 √ 】 W [ 3 ] W^{[3]} W[3]的形状是 (1, 3)

第十题

10.前面的问题使用了一个特定的网络,一般情况下,层 l l l的权重矩阵 W [ l ] W^{[l]} W[l]的维数是多少?

A. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l − 1 ] ) (n^{[l]},n^{[l-1]}) (n[l],n[l1])

B. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l − 1 ] , n [ l ] ) (n^{[l-1]},n^{[l]}) (n[l1],n[l])

C. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l + 1 ] , n [ l ] ) (n^{[l+1]},n^{[l]}) (n[l+1],n[l])

D. 【  】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l + 1 ] ) (n^{[l]},n^{[l+1]}) (n[l],n[l+1])

答案:

A.【 √ 】 W [ l ] W^{[l]} W[l]的形状是 ( n [ l ] , n [ l − 1 ] ) (n^{[l]},n^{[l-1]}) (n[l],n[l1])

http://www.mfbz.cn/news/253/

相关文章:

  • 好的培训网站模板电脑系统优化软件十大排名
  • 嘉兴网红打卡景点seo建站是什么意思
  • 免费服务器推荐宝鸡百度seo
  • 手机网站开发报价如何推广网站运营
  • 中国网站的建设兰州网络推广公司哪家好
  • 政府网站内容建设管理规范济南网站优化培训
  • 怎么用php作动态网站开发中国广告网
  • 大淘客优惠券网站是怎么做的企业宣传软文范例
  • 南通网站建设项目免费个人主页网站
  • 广州大型网站建设公司图片识别 在线识图
  • 有没有免费建站永久免费开网店app
  • 珠海集团网站建设疫情最新情况 最新消息 全国
  • wordpress旅游网站主题优化大师电脑版官方免费下载
  • 怎样制作专业简历狼雨seo网站
  • 用哪个网站做相册视频文件夹网站快速优化排名排名
  • 家居企业网站建设平台免费创建自己的网站
  • wordpress中文网站模板网站内部seo优化包括
  • 可以做护考题目的网站百度网盘登录
  • 绵阳网站搜索优化播放量自助下单平台
  • wordpress 画图插件seo网站优化培
  • 网站推广外包公司哪家好打开百度网页
  • 上哪里建设个人网站买友情链接
  • 网站页面设计最宽可做多宽软文写作的技巧
  • 单位政府网站建设情况汇报湖北seo关键词排名优化软件
  • 建立网站要怎么做2023疫情第三波爆发时间
  • 东莞建网站的公司国外搜索引擎排名
  • 中电建铁路建设公司网站奶盘seo伪原创工具
  • 河北做网站的如何在百度提交自己的网站
  • 网站美工做的是什么网络做推广公司
  • 做网站接活全流程百度无广告搜索引擎