LLM学习笔记(1)

学习链接

ChatGPT Prompt Engineering for Developers - DeepLearning.AI

一、prompt engineering for developer

1、原则

prompting principles and iterative pattern

 

 2、用于summarize

环境与helper functions

import openai
import os

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

openai.api_key  = os.getenv('OPENAI_API_KEY')

def get_completion(prompt, model="gpt-3.5-turbo",temperature=0): # Andrew mentioned that the prompt/ completion paradigm is preferable for this class
    messages = [{"role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature, # this is the degree of randomness of the model's output
    )
    return response.choices[0].message["content"]
prompt = f"""
Your task is to generate a short summary of a product \
review from an ecommerce site to give feedback to the \
pricing deparmtment, responsible for determining the \
price of the product.  

Summarize the review below, delimited by triple 
backticks, in at most 30 words, and focusing on any aspects \
that are relevant to the price and perceived value. 

Review: ```{prod_review}```
"""

response = get_completion(prompt)
print(response)
prompt = f"""
Your task is to extract relevant information from \ 
a product review from an ecommerce site to give \
feedback to the Shipping department. 

From the review below, delimited by triple quotes \
extract the information relevant to shipping and \ 
delivery. Limit to 30 words. 

Review: ```{prod_review}```
"""

response = get_completion(prompt)
print(response)

Try "extract" instead of "summarize" 

3、用于推断

如情绪识别,写一段有情绪倾向的文章等

https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/5/inferring

4、用于转换

如翻译、拼写、语法检查、格式转换等

(1)翻译

prompt = f"""
Translate the following  text to French and Spanish
and English pirate: \
```I want to order a basketball```
"""
response = get_completion(prompt)
print(response)

(2)文风转换

prompt = f"""
Translate the following from slang to a business letter: 
'Dude, This is Joe, check out this spec on this standing lamp.'
"""
response = get_completion(prompt)
print(response)

(3)格式转换

data_json = { "resturant employees" :[ 
    {"name":"Shyam", "email":"shyamjaiswal@gmail.com"},
    {"name":"Bob", "email":"bob32@gmail.com"},
    {"name":"Jai", "email":"jai87@gmail.com"}
]}

prompt = f"""
Translate the following python dictionary from JSON to an HTML \
table with column headers and title: {data_json}
"""
response = get_completion(prompt)
print(response)

from IPython.display import display, Markdown, Latex, HTML, JSON
display(HTML(response))

(4)语法检查、更正等

5、Expanding(扩展)

参数:temperature

 6、Chatbot

角色说明

 order robot

def collect_messages(_):
    prompt = inp.value_input
    inp.value = ''
    context.append({'role':'user', 'content':f"{prompt}"})
    response = get_completion_from_messages(context) 
    context.append({'role':'assistant', 'content':f"{response}"})
    panels.append(
        pn.Row('User:', pn.pane.Markdown(prompt, width=600)))
    panels.append(
        pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))
 
    return pn.Column(*panels)

import panel as pn  # GUI
pn.extension()

panels = [] # collect display 

context = [ {'role':'system', 'content':"""
You are OrderBot, an automated service to collect orders for a pizza restaurant. \
You first greet the customer, then collects the order, \
and then asks if it's a pickup or delivery. \
You wait to collect the entire order, then summarize it and check for a final \
time if the customer wants to add anything else. \
If it's a delivery, you ask for an address. \
Finally you collect the payment.\
Make sure to clarify all options, extras and sizes to uniquely \
identify the item from the menu.\
You respond in a short, very conversational friendly style. \
The menu includes \
pepperoni pizza  12.95, 10.00, 7.00 \
cheese pizza   10.95, 9.25, 6.50 \
eggplant pizza   11.95, 9.75, 6.75 \
fries 4.50, 3.50 \
greek salad 7.25 \
Toppings: \
extra cheese 2.00, \
mushrooms 1.50 \
sausage 3.00 \
canadian bacon 3.50 \
AI sauce 1.50 \
peppers 1.00 \
Drinks: \
coke 3.00, 2.00, 1.00 \
sprite 3.00, 2.00, 1.00 \
bottled water 5.00 \
"""} ]  # accumulate messages


inp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here…')
button_conversation = pn.widgets.Button(name="Chat!")

interactive_conversation = pn.bind(collect_messages, button_conversation)

dashboard = pn.Column(
    inp,
    pn.Row(button_conversation),
    pn.panel(interactive_conversation, loading_indicator=True, height=300),
)

dashboard

7、总结

二、LangChain for LLM Application Development

1、Components

2、

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/102252.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Kohonen网络的聚类算法

1.案例背景 1.1 Kohonen网络 Kohonen网络是自组织竞争型神经网络的一种,该网络为无监督学习网络,能够识别环境特征并自动聚类。Kohonen神经网络是芬兰赫尔辛基大学教授Teuvo Kohonen 提出的,该网络通过自组织特征映射调整网络权值,使神经网络收敛于一种表示形态。在这一形态中…

【LeetCode】1654:到家的最少跳跃次数的解题思路 关于力扣无法return的BUG的讨论

文章目录 一、题目二、题解与代码三、神奇的BUG3.1 无法执行的 return 和 break 语句3.2 通过另一个 break 解决 一、题目 有一只跳蚤的家在数轴上的位置 x 处。请你帮助它从位置 0 出发,到达它的家。 跳蚤跳跃的规则如下: 它可以 往前 跳恰好 a 个位…

Maven入门教程(三):Maven语法

视频教程:Maven保姆级教程 Maven入门教程(一):安装Maven环境 Maven入门教程(二):idea/Eclipse使用Maven Maven入门教程(三):Maven语法 Maven入门教程(四):Nexus私服 Maven入门教程(五):自定义脚手架 6.Mav…

spring高级源码50讲-37-42(springBoot)

Boot 37) Boot 骨架项目 如果是 linux 环境,用以下命令即可获取 spring boot 的骨架 pom.xml curl -G https://start.spring.io/pom.xml -d dependenciesweb,mysql,mybatis -o pom.xml也可以使用 Postman 等工具实现 若想获取更多用法,请参考 curl …

Android逆向学习(二)vscode进行双开与图标修改

Android逆向学习(二)vscode进行双开与图标修改 写在前面 这其实应该还是吾爱的第一个作业,但是写完上一个博客的时候已经比较晚了,如果继续敲机械键盘吵到室友,我怕我看不到明天的太阳,所以我决定分成两篇…

七、Linux中一些符号的含义和宿主目录的介绍

1、Linux中一些符号的含义 在Linux命令行中,会看到如下一些符号,含义如下。 符号含义. 代表当前目录..代表上一层目录,当前目录的父目录-代表前一个目录,刚才从哪个目录cd过来~代表当前用户的宿主目录/代表根目录$普通用户的命…

【高效编程技巧】编程菜鸟和编程大佬的差距究竟在哪里?

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《高效编程技巧》《C语言进阶》 ⛺️生活的理想,就是为了理想的生活! 文章目录 📋 前言1.如何写出好的代码?1.2 如何分析一个函数写的怎么样 2. 代码板式的重要性2.1 代码…

③matlab向量和矩阵

目录 手动输入数组 创建等间距向量 数组创建函数 手动输入数组 1.背景 单个称为标量的数值实际上是一个 11 数组,也即它包含 1 行 1 列。 任务 创建一个名为 x 并且值为 4 的变量。 2.您可以使用方括号创建包含多个元素的数组。 x [3 5] x 3 5 任务 …

ChatGPT Prompting开发实战(三)

一、关于chaining prompts与CoT的比较 前面谈到的CoT的推理过程,可以比作是一次性就烹调好一顿大餐,那么接下来要说的“chaining prompts”,其背后的理念是分多次来完成这样一项复杂任务,每次只完成其中一步或者一个子任务。核心…

轻量、便捷、高效—经纬恒润AETP助力车载以太网测试

随着自动驾驶技术和智能座舱的不断发展,高宽带、高速率的数据通信对主干网提出了稳定、高效的传输要求,CAN(FD)、LIN已无法充分满足汽车的通信需求。车载以太网作为一种快速且扩展性好的网络技术,已经逐步成为了汽车主干网的首选。 此外&…

Kubernetes技术--k8s核心技术 Secret

1.概述 Secret 解决了密码、token、密钥等敏感数据的配置问题,而不需要把这些敏感数据暴露到镜像或者 Pod Spec中。Secret可以以 Volume 或者环境变量的方式使用。 作用 加密数据存储在/etc中,使得pod容器以挂载volume方式进行访问。在进行的数据存储中是以base64加密的方式…

yolov2相较于yolov1的改进

目录 前言 BN层取代了Dropout 使用了高分辨率分类器 K-means选定先验框的尺寸 网络结构—darknet19 细粒度的特征 前言 yolov2是在yolov1的基础上进行改进的,主要解决了yolov1定位不准确以及检测重叠的物体极差的情况,总的来说,它有以下…

Gitee注册和使用

个人主页:点我进入主页 专栏分类:C语言初阶 C语言程序设计————KTV C语言小游戏 欢迎大家点赞,评论,收藏。 一起努力,一起奔赴大厂。 目录 1.Gitee 1.1Gitee是什么 1.2Gitee的注册以及远程仓库的创建…

iOS 设置下载部分文件,如何获取完整文件的大小

在视频的需求中,遇到这样一个需求,播放一视频的时候,要预下载 后面10条视频,但是只下载后面十条视频的前面1M 实现方法 1 创建请求时设置cacheLength resource [[IdiotResource alloc] init];resource.requestURL task.request…

docker命令学习

docker vscode插件出现的问题 docker命令 docker images (查看所有的镜像) docker ps -a (查看所有的容器) docker ps (查看运行的容器) docker run imageID docker run --gpus all --shm-size8g -it imag…

day27 String类 正则表达式

String类的getBytes方法 String s "腻害"; byte[] bytes s.getBytes(StandardCharsets.UTF_8); String类的new String方法 String ss "ss我的"; byte[] gbks ss.getBytes("gbk"); String gbk new String(gbks, "gbk"); String类的…

C++学习笔记总结练习:多态与虚函数

1 多态 多态分类 静态多态,是只在编译期间确定的多态。静态多态在编译期间,根据函数参数的个数和类型推断出调用的函数。静态多态有两种实现的方式 重载。(函数重载)模板。 动态多态,是运行时多态。通过虚函数机制实…

C#,《小白学程序》第八课:列表(List)应用之二“编制高铁列车时刻表”

1 文本格式 /// <summary> /// 车站信息类 class /// </summary> public class Station { /// <summary> /// 编号 /// </summary> public int Id { get; set; } 0; /// <summary> /// 车站名 /// </summary&g…

在Ubuntu Linux系统上安装RabbitMQ服务并解决公网远程访问问题

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

系列五、Java操作RocketMQ简单消息之同步消息

一、概述 同步消息的特征是消息发出后会有一个返回值&#xff0c;即RocketMQ服务器收到消息后的一个确认&#xff0c;这种方式非常安全&#xff0c;但是性能上却没有那么高&#xff0c;而且在集群模式下&#xff0c;也是要等到所有的从机都复制了消息以后才会返回&#xff0c;适…