Java8 新特性

Interface

nterface 的设计初衷是面向抽象,提高扩展性。这也留有一点遗憾,Interface 修改的时候,实现它的类也必须跟着改。

为了解决接口的修改与现有的实现不兼容的问题。新 interface 的方法可以用default 或 static修饰,这样就可以有方法体,实现类也不必重写此方法。

一个 interface 中可以有多个方法被它们修饰,这 2 个修饰符的区别主要也是普通方法和静态方法的区别。

  1. default修饰的方法,是普通实例方法,可以用this调用,可以被子类继承、重写。
  2. static修饰的方法,使用上和一般类静态方法一样。但它不能被子类继承,只能用Interface调用。

我们来看一个实际的例子。

public interface Interface1 {
    static void fun1() {
        System.out.println("Interface1提供的方式实现");
    }
    static void fun2() {
        System.out.println("Interface1提供的方式实现");
    }

    default void def1() {
        System.out.println("Interface1 default1方法");
    }
    default void def2() {
        System.out.println("Interface1 default2方法");
    }

    //必须要实现类重写
    void func();

}

public interface Interface2 {
    default void def1() {
        System.out.println("Interface2 default1方法");
    }
}

如果有一个类既实现了 Interface1 接口又实现了 Interface2 接口,它们都有def1(),并且 Interface1 接口和 Interface2 接口没有继承关系的话,这时就必须重写def1()。不然的话,编译的时候就会报错。

public class Test implements Interface1, Interface2{
    
    @Override
    public void def1() {
        Interface1.super.def1();
    }

    @Override
    public void func() {

    }
}

functional interface 函数式接口

定义:也称 SAM 接口,即 Single Abstract Method interfaces,有且只有一个抽象方法,但可以有多个非抽象方法的接口。

在 java 8 中专门有一个包放函数式接口java.util.function,该包下的所有接口都有 @FunctionalInterface 注解,提供函数式编程。

在其他包中也有函数式接口,其中一些没有@FunctionalInterface 注解,但是只要符合函数式接口的定义就是函数式接口,与是否有@FunctionalInterface注解无关,注解只是在编译时起到强制规范定义的作用。其在 Lambda 表达式中有广泛的应用

Lambda 表达式

Lambda 表达式(lambda expression)是一个匿名函数,Lambda表达式基于数学中的λ演算得名,直接对应于其中的lambda抽象(lambda abstraction),是一个匿名函数,即没有函数名的函数。Lambda表达式可以表示闭包(注意和数学传统意义上的不同)。

使用 Lambda 表达式可以使代码变的更加简洁紧凑。让 java 也能支持简单的函数式编程。

Lambda 表达式是一个匿名函数,java 8 允许把函数作为参数传递进方法中。

Java8 的一个大亮点是引入Lambda表达式,使用它设计的代码会更加简洁。当开发者在编写Lambda表达式时,也会随之被编译成一个函数式接口。下面这个例子就是使用Lambda语法来代替匿名的内部类,代码不仅简洁,而且还可读。

没有使用Lambda的老方法:

button.addActionListener(new ActionListener(){
    public void actionPerformed(ActionEvent actionEvent){
        System.out.println("Action detected");
    }
});

使用Lambda:

button.addActionListener( actionEvent -> { 
    System.out.println("Action detected");
});

让我们来看一个更明显的例子。

不采用Lambda的老方法:

Runnable runnable1=new Runnable(){
@Override
public void run(){
    System.out.println("Running without Lambda");
}
};

使用Lambda:

Runnable runnable2=()->System.out.println("Running from Lambda");

正如你所看到的,使用Lambda表达式不仅让代码变的简单、而且可读、最重要的是代码量也随之减少很多。然而,在某种程度上,这些功能在Scala等这些JVM语言里已经被广泛使用。

并不奇怪,Scala社区是难以置信的,因为许多Java 8里的内容看起来就像是从Scala里搬过来的。在某种程度上,Java 8的语法要比Scala的更详细但不是很清晰,但这并不能说明什么,如果可以,它可能会像Scala那样构建Lambda表达式。

一方面,如果Java继续围绕Lambda来发展和实现Scala都已经实现的功能,那么可能就不需要Scala了。另一方面,如果它只提供一些核心的功能,例如帮助匿名内部类,那么Scala和其他语言将会继续茁壮成长,并且有可能会凌驾于Java之上。其实这才是最好的结果,有竞争才有进步,其它语言继续发展和成长,并且无需担心是否会过时。

语法格式

(parameters) -> expression 或
(parameters) ->{ statements; }

Lambda 实战

替代匿名内部类

过去给方法传动态参数的唯一方法是使用内部类。比如

1.Runnable 接口

new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("The runable now is using!");
            }
}).start();
//用lambda
new Thread(() -> System.out.println("It's a lambda function!")).start();

2.Comparator 接口

List<Integer> strings = Arrays.asList(1, 2, 3);

Collections.sort(strings, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
    return o1 - o2;}
});

//Lambda
Collections.sort(strings, (Integer o1, Integer o2) -> o1 - o2);
//分解开
Comparator<Integer> comparator = (Integer o1, Integer o2) -> o1 - o2;
Collections.sort(strings, comparator);

3.Listener 接口

JButton button = new JButton();
button.addItemListener(new ItemListener() {
@Override
public void itemStateChanged(ItemEvent e) {
   e.getItem();
}
});
//lambda
button.addItemListener(e -> e.getItem());

4.自定义接口

上面的 3 个例子是我们在开发过程中最常见的,从中也能体会到 Lambda 带来的便捷与清爽。它只保留实际用到的代码,把无用代码全部省略。那它对接口有没有要求呢?我们发现这些匿名内部类只重写了接口的一个方法,当然也只有一个方法须要重写。这就是我们上文提到的函数式接口,也就是说只要方法的参数是函数式接口都可以用 Lambda 表达式。

@FunctionalInterface
public interface Comparator<T>{}

@FunctionalInterface
public interface Runnable{}

我们自定义一个函数式接口

@FunctionalInterface
public interface LambdaInterface {
 void f();
}
//使用
public class LambdaClass {
    public static void forEg() {
        lambdaInterfaceDemo(()-> System.out.println("自定义函数式接口"));
    }
    //函数式接口参数
    static void lambdaInterfaceDemo(LambdaInterface i){
        i.f();
    }
}

集合迭代

public static void main(String[] args) {
        List<String> strings = Arrays.asList("a", "b",  "c", "d", "e", "f", "g");

        //传统foreach
        for (String s : strings) {
            System.out.println(s);
        }

        //Lambda foreach
        strings.forEach((s) -> System.out.println(s));

        strings.forEach(System.out::println);

        //map
        Map<String, String> map = new HashMap<>();
        map.put("1", "1");
        map.put("2", "2");
        map.put("3", "3");

        map.forEach((k,v) -> System.out.println(v));
    }

方法引用

Java 8 允许使用 :: 关键字来传递方法或者构造函数引用,无论如何,表达式返回的类型必须是 functional-interface。

public class LambdaClassSuper {
    LambdaInterface sf(){
        return null;
    }
}

public class LambdaClass extends LambdaClassSuper {
    public static LambdaInterface staticF() {
        return null;
    }

    public LambdaInterface f() {
        return null;
    }

    void show() {
        //1.调用静态函数,返回类型必须是functional-interface
        LambdaInterface t = LambdaClass::staticF;

        //2.实例方法调用
        LambdaClass lambdaClass = new LambdaClass();
        LambdaInterface lambdaInterface = lambdaClass::f;

        //3.超类上的方法调用
        LambdaInterface superf = super::sf;

        //4. 构造方法调用
        LambdaInterface tt = LambdaClassSuper::new;
    }
}

访问变量

int i = 0;
Collections.sort(strings, (Integer o1, Integer o2) -> o1 - i);
//i =3;

Stream

java 新增了 java.util.stream 包,它和之前的流大同小异。之前接触最多的是资源流,比如java.io.FileInputStream,通过流把文件从一个地方输入到另一个地方,它只是内容搬运工,对文件内容不做任何CRUD。

Stream依然不存储数据,不同的是它可以检索(Retrieve)和逻辑处理集合数据、包括筛选、排序、统计、计数等。可以想象成是 Sql 语句。

它的源数据可以是 Collection、Array 等。由于它的方法参数都是函数式接口类型,所以一般和 Lambda 配合使用。

流类型

  1. stream 串行流

  2. parallelStream 并行流,可多线程执行

常用方法

接下来我们看java.util.stream.Stream常用方法

/**
* 返回一个串行流
*/
default Stream<E> stream()

/**
* 返回一个并行流
*/
default Stream<E> parallelStream()

/**
* 返回T的流
*/
public static<T> Stream<T> of(T t)

/**
* 返回其元素是指定值的顺序流。
*/
public static<T> Stream<T> of(T... values) {
    return Arrays.stream(values);
}


/**
* 过滤,返回由与给定predicate匹配的该流的元素组成的流
*/
Stream<T> filter(Predicate<? super T> predicate);

/**
* 此流的所有元素是否与提供的predicate匹配。
*/
boolean allMatch(Predicate<? super T> predicate)

/**
* 此流任意元素是否有与提供的predicate匹配。
*/
boolean anyMatch(Predicate<? super T> predicate);

/**
* 返回一个 Stream的构建器。
*/
public static<T> Builder<T> builder();

/**
* 使用 Collector对此流的元素进行归纳
*/
<R, A> R collect(Collector<? super T, A, R> collector);

/**
 * 返回此流中的元素数。
*/
long count();

/**
* 返回由该流的不同元素(根据 Object.equals(Object) )组成的流。
*/
Stream<T> distinct();

/**
 * 遍历
*/
void forEach(Consumer<? super T> action);

/**
* 用于获取指定数量的流,截短长度不能超过 maxSize 。
*/
Stream<T> limit(long maxSize);

/**
* 用于映射每个元素到对应的结果
*/
<R> Stream<R> map(Function<? super T, ? extends R> mapper);

/**
* 根据提供的 Comparator进行排序。
*/
Stream<T> sorted(Comparator<? super T> comparator);

/**
* 在丢弃流的第一个 n元素后,返回由该流的 n元素组成的流。
*/
Stream<T> skip(long n);

/**
* 返回一个包含此流的元素的数组。
*/
Object[] toArray();

/**
* 使用提供的 generator函数返回一个包含此流的元素的数组,以分配返回的数组,以及分区执行或调整大小可能需要的任何其他数组。
*/
<A> A[] toArray(IntFunction<A[]> generator);

/**
* 合并流
*/
public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)

实战

public static void main(String[] args) {
        List<String> strings = Arrays.asList("abc", "def", "hig", "klm", "abc", "def", "abc", "def");

        //返回符合条件的stream
        Stream<String> stringStream1 = strings.stream().filter(s -> "abc".equals(s));

        Stream<java.lang.String> stringStream2 = strings.stream().filter("abc"::equals);

        //计算流符合条件的流的数量
        long count = stringStream1.count();

        //forEach遍历->打印元素
        strings.stream().forEach(System.out::println);

        //limit 获取到1个元素的stream
        Stream<String> limit = strings.stream().limit(1);

        //toArray 比如我们想看这个limitStream里面是什么,比如转换成String[],比如循环
        String[] array = limit.toArray(String[]::new);


        //map 对每个元素进行操作返回新流
        Stream<String> stringStream3 = strings.stream().map(s -> s + "?");

        //sorted 排序并打印
        strings.stream().sorted().forEach(System.out::println);

        //Collectors collect 把abc放入容器中
        List<String> collect1 = strings.stream().filter(string -> "abc".equals(string)).collect(Collectors.toList());

        List<String> collect2 = strings.stream().filter("abc"::equals).collect(Collectors.toList());

        //把list转为string,各元素用,号隔开
        String mergedString = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.joining(","));

        //对数组的统计,比如用
        List<Integer> number = Arrays.asList(1, 2, 5, 4);

        IntSummaryStatistics statistics = number.stream().mapToInt((x) -> x).summaryStatistics();
        System.out.println("列表中最大的数 : "+statistics.getMax());
        System.out.println("列表中最小的数 : "+statistics.getMin());
        System.out.println("平均数 : "+statistics.getAverage());
        System.out.println("所有数之和 : "+statistics.getSum());


        //concat 合并流
        List<String> strings2 = Arrays.asList("nop", "qrs");
        Stream.concat(strings2.stream(),strings.stream()).count();

        //注意 一个Stream只能操作一次,不能断开,否则会报错。
        Stream stream = strings.stream();
        //第一次使用
        stream.limit(2);
        //第二次使用
        stream.forEach(System.out::println);
        //报错 java.lang.IllegalStateException: stream has already been operated upon or closed

        //但是可以这样, 连续使用
        stream.limit(2).forEach(System.out::println);
    }

延迟执行

在执行返回 Stream 的方法时,并不立刻执行,而是等返回一个非 Stream 的方法后才执行。因为拿到 Stream 并不能直接用,而是需要处理成一个常规类型。这里的 Stream 可以想象成是二进制流,拿到也看不懂。

我们下面分解一下 filter 方法。

 public static void main(String[] args) {

        List<String> strings = Arrays.asList("abc", "def", "ghi", "jkl");
        Stream<Integer> stream = strings.stream().filter(new Predicate() {
            @Override
            public boolean test(Object o) {
                System.out.println("Predicate 执行");
                return true;
            }
        });

        System.out.println("count 执行");
        stream.count();
    }

//执行结果
count 执行
Predicate 执行
Predicate 执行
Predicate 执行
Predicate 执行

按执行顺序应该是先打印 4 次「Predicate 执行」,再打印「count 执行」。实际结果恰恰相反。说明 filter 中的方法并没有立刻执行,而是等调用count()方法后才执行。

上面都是串行 Stream 的实例。并行 parallelStream 在使用方法上和串行一样。主要区别是 parallelStream 可多线程执行,是基于 ForkJoin 框架实现的,有时间大家可以了解一下 ForkJoin 框架和 ForkJoinPool。这里可以简单的理解它是通过线程池来实现的,这样就会涉及到线程安全,线程消耗等问题。下面我们通过代码来体验一下并行流的多线程执行。

@Test
public void parallelStreamTest(){
   List<Integer> numbers = Arrays.asList(1, 2, 5, 4);
   numbers.parallelStream() .forEach(num->System.out.println(Thread.currentThread().getName()+">>"+num));
}
//执行结果
main>>5
ForkJoinPool.commonPool-worker-2>>4
ForkJoinPool.commonPool-worker-11>>1
ForkJoinPool.commonPool-worker-9>>2

从结果中我们看到,for-each 用到的是多线程。

小结

从源码和实例中我们可以总结出一些 stream 的特点

  1. 通过简单的链式编程,使得它可以方便地对遍历处理后的数据进行再处理。

  2. 方法参数都是函数式接口类型

  3. 一个 Stream 只能操作一次,操作完就关闭了,继续使用这个 stream 会报错。

  4. Stream 不保存数据,不改变数据源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/10496.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue——模板引用

目录 访问模板引用​ v-for 中的模板引用​ 函数模板引用​ 组件上的 ref​ 虽然 Vue 的声明性渲染模型为你抽象了大部分对 DOM 的直接操作&#xff0c;但在某些情况下&#xff0c;我们仍然需要直接访问底层 DOM 元素。要实现这一点&#xff0c;我们可以使用特殊的 ref att…

【FPGA】多功能ALU

目录 实验要求 源代码 顶层模块 数据输入模块 ALU运算模块 结果处理模块 扫描数码管模块 扫描数码管顶层 分频器 数码管显示 仿真代码 结构层图 管脚配置 实验板卡&#xff1a;xc7a100tlc sg324-2L&#xff0c;共20个开关 实验要求 通过高低位控制&#xff0c;实现32位数…

Spring boot基础学习之(十八):通过shiro框架使用Mybatis实现用户的认证完整的认证流程

在上几篇文章的基础上&#xff0c;实现本次案例 注意&#xff1a;本篇文章的实现代码在几篇文章都已经详细的讲过了&#xff0c;所以在此篇文章&#xff0c;将不再有理论知识的陈述&#xff0c;更过的流程&#xff0c;如何通过代码实现连接数据库进行认证 添加本次案例所需要的…

00后也太卷了吧!进厂起薪18K,原来面试时候都说了这些......

都说00后躺平了&#xff0c;但是有一说一&#xff0c;该牛的还是牛。 这不&#xff0c;前段时间公司来了个00后&#xff0c;工作都没两年&#xff0c;跳槽起薪18K。本来还以为是个年少有为的技术大牛呢&#xff0c;结果相处一个月下来发现技术也就那样。 问起他是如何做到和老…

NumPy 数组学习手册:6~7

原文&#xff1a;Learning NumPy Array 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 六、性能分析&#xff0c;调试和测试 分析&#xff0c;调试和测试是开发过程的组成部分。 您可能熟悉单元测试的概念。 单元测试是程序员编写的用于测试其代码的自动测试。 例如&…

android jetpack Navigation的使用(java)

简介 Navigation通过图形化的方式管理配置页面的切换。 基本使用 添加依赖 implementation androidx.navigation:navigation-fragment:2.5.3implementation androidx.navigation:navigation-ui:2.5.3创建xml文件&#xff08;添加导航图&#xff09;——nav_graph.xml nav_…

六个阶段形成CRM销售漏斗,优点有哪些

CRM销售漏斗是反映机会状态以及销售效率的重要的销售管理模型。对企业来说&#xff0c;CRM销售漏斗是一个必不可少的工具。通过销售漏斗&#xff0c;企业可以跟踪和分析客户旅程的每个阶段&#xff0c;并制定相应的销售战略。下面来说说&#xff0c;什么是CRM销售漏斗&#xff…

Nginx

文章目录一、目录结构二、多进程模型和请求基本流程三、基础配置3.1 最小配置文件3.2 servername的多种匹配方式3.2.1完整匹配3.2.2通配符匹配3.2.3通配符结束匹配3.2.4正则匹配四、反向代理4.1 反向代理到外网与内网主机的配置4.2 负载均衡配置五、动静分离六、URLRewrite 伪静…

C-关键字(下)

文章目录循环控制switch-case-break-defaultdo-while-forgetchar()break-continuegotovoidvoid*returnconstconst修饰变量const修饰数组const修饰指针指针补充const 修饰返回值volatilestruct柔型数组union联合体联合体空间开辟问题利用联合体的性质,判断机器是大端还是小端enu…

运行时内存数据区之虚拟机栈——动态链接、方法返回地址与一些附加信息

动态链接&#xff08;Dynamic Linking&#xff09;——指向运行时常量池的方法引用 每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用。包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking)。比如&#xff1a;invokedynamic指令。…

( “树” 之 DFS) 101. 对称二叉树 ——【Leetcode每日一题】

101. 对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true 示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false 提示&#xff1a…

聚焦元宇宙赋能产业,打造数字世界,“OFweek2023广州元宇宙产业发展高峰论坛”圆满落幕!

2023年4月12日下午&#xff0c;由广东潮域科技有限公司、OFweek维科网共同主办&#xff0c;OFweek人工智能网承办的“OFweek 2023 广州元宇宙产业发展高峰论坛”在广州保利世贸博览馆1号馆盛大举办。 元宇宙产业相关技术及设备&#xff0c;包括VR&#xff0f;AR、虚拟现实、物联…

springboot配置跨域问题

近期自己搭建项目时&#xff0c;遇到一个跨域问题。我们以前项目解决跨域是在controller上加一个跨域注解CrossOrigin(allowCredentials "true")&#xff0c;很方便。但是在我自己搭建的项目中&#xff0c;启动时竟然报错了&#xff0c;错误如下&#xff1a; When …

不会写代码也能做自动化?推荐一款自动化测试神器

在软件测试这条道路上&#xff0c;大部分的职业技能发展道路都会是纯业务手工测试→自动化测试→性能测试→安全测试/测试开发。 但是却有着一部分人起初进入软件测试这一行看重的就是软件测试属于IT行业&#xff0c;门槛比较低&#xff0c;不需要代码基础。 这就导致了这一部…

第07章_面向对象编程(进阶)

第07章_面向对象编程(进阶) 讲师&#xff1a;尚硅谷-宋红康&#xff08;江湖人称&#xff1a;康师傅&#xff09; 官网&#xff1a;http://www.atguigu.com 本章专题与脉络 1. 关键字&#xff1a;this 1.1 this是什么&#xff1f; 在Java中&#xff0c;this关键字不算难理解…

<数据结构> 链表 - 单链表(c语言实现)

B.最简单结构的链表——不带哨兵位单链表的实现&#xff08;关于哨兵位结点&#xff09; 一、不带哨兵位单链表结点的创建1.1 typedef 链表的数据类型 1.2 结点的结构体创建 二、单链表要实现的功能 三、需要包含的头文件四、函数接口一览为什么有些函数参数传递的是二级指针&a…

【大数据之Hadoop】十一、MapReduce之Shuffle、MapTask、ReduceTask工作机制

1 Shuffle机制 对于排序而言分为两个阶段&#xff0c;MapTask后和ReduceTask前。 2 MapTask工作机制 MapTask并行度由切片个数决定&#xff1b;切片个数由切片大小&#xff08;切片大小取决于块大小、maxsize&#xff08;Long的最大值&#xff09;和minsize&#xff08;默认为…

设计模式之模板模式(C++)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 一、模板模式是什么&#xff1f; 模板模式是一种行为型的软件设计模式&#xff0c;在父类中定义了一个模板算法&#xff0c;只实现…

Android---MVC/MVP/MVVM的演进

目录 一个文件打天下 一个文件--->MVC MVC--->MVP MVP--->MVVM 6大设计原则 完整demo 我们通过"#字棋"游戏来展现MVC-->MVP-->MVVM 之间的演进 一个文件打天下 数据、视图以及逻辑都放在一个 class 里面。而一个 class 里最多 500 行代码&…

GPT-4 和ChatGPT API的定价分析

OpenAI发布了他们的ChatGPT新机器学习模型GPT-4。GPT-4是GPT-3的一大进步&#xff0c;GPT-3是当前ChatGPT免费版本(GPT 3.5 Turbo)所运行的模型的基础&#xff0c;今天我们也来凑个热点&#xff0c;研究一下它们的定价 GPT-4新的功能 GPT-4可以在对话中使用图像&#xff0c;并…
最新文章