【电路笔记】-相量图和相量代数

相量图和相量代数

文章目录

  • 相量图和相量代数
    • 1、概述
    • 2、相量图
    • 3、相量代数
      • 3.1 加减
      • 3.2 差异化与整合
    • 4、总结

1、概述

交流电信号可以用三种不同的方法来表示,以便表征和实现代数运算。 前面的文章中已经介绍了两种方法,本文稍后将介绍一种新的图形方法。

在这里插入图片描述

最简单和自然的方法是将交流信号 y ( t ) y(t) y(t) 写为时间的正弦函数,如正弦波形教程中所述:

在这里插入图片描述

等式1:交流信号的自然表示

A A A 为振幅, 2 π f = ω 2\pi f=\omega 2πf=ω 为角速度, f f f 为频率, ϕ \phi ϕ为瞬时相位。

然而,这种表示法不方便实现两个或多个相同频率的交流信号的代数,因为没有通用的三角公式 A sin ⁡ ( X ) + B sin ⁡ ( Y ) A\sin(X)+B\sin(Y) Asin(X)+Bsin(Y)来将结果写成等式1所示的形式。

在复数文章中,我们已经看到 y ( t ) y(t) y(t) 可以重写为复数。 编写正弦波形的第二种方法简化了交流信号之间的代数。

在这里插入图片描述

等式2:交流信号的复杂表示

事实上,我们想将两个信号 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t) 相加,它们各自的参数为 A 1 A_1 A1 A 2 A_2 A2 ϕ 1 \phi_1 ϕ1 ϕ 2 \phi_2 ϕ2 ω 1 = ω 2 \omega_1=\omega_2 ω1=ω2。 使用复数形式,项 e j ω t e^{j\omega t} et可以作为公因子:

在这里插入图片描述

等式3:两个复杂的交流信号相加

A 3 A_3 A3 ϕ 3 \phi_3 ϕ3 取决于 A 1 A_1 A1 A 2 A_2 A2 ϕ 1 \phi_1 ϕ1 ϕ 2 \phi_2 ϕ2,即所得信号 y 3 ( t ) y_3(t) y3(t) 的新参数幅度和瞬时相位。

在本文中,我们将介绍正弦波形的一种新的图形表示形式,称为相量表示形式。 第一部分将介绍这个新概念并阐明它的来源。

本文的核心,我们将重点关注相量的代数:如何实现加法/减法和微分/积分。 将会强调为什么这种表示使交流信号的代数变得更加方便。

2、相量图

相量的概念来自于交流信号的复杂表示。 从等式2 中,我们确实可以将指数项分为两部分: A e j ω t + ϕ = A e j ω t e j ϕ Ae^{j\omega t+\phi}=Ae^{j\omega t}e^{j\phi} Aet+ϕ=Aetejϕ。 我们将相量称为量 A e j ϕ Ae^{j\phi} Aejϕ,它是一个复数,因此可以在复平面中表示为向量,其中 ϕ \phi ϕ是实数轴和相量之间的角度, A A A 是向量的模:

在这里插入图片描述

图1:复平面中相量的表示

有时, A e j ω t e j ϕ Ae^{j\omega t}e^{j\phi} Aetejϕ可以指相量,在这种情况下,矢量以角速度 ω \omega ω逆时针旋转。

将单个信号表示为相量并没有什么实际意义,但是,相量图可以比代数更简单地解决两个或多个交流信号的一些问题,正如我们将在下一节中介绍的那样。

相量图由与上述相同的图形组成,但具有两个或多个向量。 例如,考虑一个交流信号,其电压和电流相移为 ϕ \phi ϕ V ( t ) = V s i n ( ω t ) V(t)=V_{sin}(\omega t) V(t)=Vsin(ωt);$ I(t)=I\sin(\omega t+\phi)$。 在这种情况下,我们将 V ( t ) V(t) V(t) 表示为与实数轴对齐的参考相量,并将 I(t) 表示为逆时针方向的角度 ϕ \phi ϕ

在这里插入图片描述

图2:两个相移信号的相量图

在这种特殊情况下,电流超前电压,或者我们也可以说电压滞后电流。 有关此事实的更多信息可以在[分相器](#)文章中找到。

我们注意到,由于相量表示特定时间段内信号的状态,因此如果我们取 t ≠ 0 t\neq 0 t=0,则可以得到无穷大的图。 因此,图3 中的下图与图2 中的图严格相似。

在这里插入图片描述

图3:t≠0 时的相量图

然而,我们更喜欢绘制如图 2 所示的图表,因为它建立了参考,并且角度 ω t \omega t ωt 不相关。

在关注相量代数之前的最后一个评论是添加那些仅当信号具有相同频率时才能绘制的相量图。 两个不同步的信号之间的相移不是恒定的,因此不同时间 t 1 t_1 t1 t 2 t_2 t2 的相量图会发生变化。

3、相量代数

3.1 加减

当我们需要对两个不同相的信号进行相加和相减时,相量图非常方便。

当两个信号同相时,假设 V 1 ( t ) = v 1 sin ⁡ ( ω t ) V_1(t)=v_1\sin(\omega t) V1(t)=v1sin(ωt) V 2 ( t ) = v 2 sin ⁡ ( ω t ) V_2(t)=v_2\sin(\omega t) V2(t)=v2sin(ωt) 确实很容易将它们相加: V 1 ( t ) + V 2 ( t ) = ( v 1 + v 2 ) ) sin ⁡ ( ω t ) V_1(t)+V_2(t)=(v_1+v_2) )\sin(\omega t) V1(t)+V2(t)=(v1+v2))sin(ωt)。 然而,当信号不同相时,由于简介中提到的原因,该过程不起作用。

考虑相移 ϕ \phi ϕ弧度的相同频率的两个电压信号: V 1 ( t ) = v 1 sin ⁡ ( ω t ) V_1(t)=v_1\sin(\omega t) V1(t)=v1sin(ωt) V 2 ( t ) = v 2 sin ⁡ ( ω t + ϕ ) V_2(t)=v_2\sin(\omega t+\phi) V2(t)=v2sin(ωt+ϕ)。 图4 显示了添加这两个相量的过程:

在这里插入图片描述

图4:两个相量相加

由于加法是交换运算,两种处理方式将导致相同的结果:从 V 1 V_1 V1 添加 V 2 V_2 V2(蓝色虚线)或从 V 2 V_2 V2 添加 V 1 V_1 V1(红色虚线)。

如果我们将图4 的网格视为每个分区代表 1 V,则我们可以确定 V 1 + V 2 V_1+V_2 V1+V2 的新幅度和相位。 我们可以看到 V 1 + V 2 V_1+V_2 V1+V2可以写成 5 + 5 j 5+5j 5+5j的复数。 因此,输出幅度为 52 + 52 = 50 ≈ 7 V \sqrt{52+52} = \sqrt{50} ≈ 7 V 52+52 =50 7V,相位为 45° 或 π / 4 \pi/4 π/4 弧度。 最后,我们可以说 V 1 + V 2 = 7 × sin ⁡ ( ω t + π / 4 ) V_1+V_2=7\times \sin(\omega t + \pi/4) V1+V2=7×sin(ωt+π/4)

这两个信号相减的过程是相同的,但是减法不可交换。 这意味着 V 1 − V 2 V_1-V_2 V1V2 V 2 − V 1 V_2-V_1 V2V1 的结果是不同的,正如我们习惯的实数一样:

在这里插入图片描述

图5:两个相量相减

V 1 − V 2 V_1-V_2 V1V2 V 2 − V 1 V_2-V_1 V2V1 的幅度相同,在我们的示例中等于 5 2 + 1 2 = 26 ≈ 5.1 V \sqrt{5^2+1^2} = \sqrt{26} ≈ 5.1 V 52+12 =26 5.1V。V1-V2 的相位等于 a t a n ( − 5 / 1 ) ≈ − 79 ° atan(-5/1) ≈ -79° atan(5/1)79° V 2 − V 1 V_2-V_1 V2V1的相位为 − 79 + 180 ° = 101 ° -79+180°=101° 79+180°=101°

相量图对于某些特定问题特别有帮助。 事实上,考虑两个频率相同的信号 V 1 V_1 V1 V 2 V_2 V2,它们相移角度 ϕ \phi ϕ,如图 4 所示。

问题是:导致破坏性干扰(例如 V 1 + V 2 + V 3 = 0 V_1+V_2+V_3=0 V1+V2+V3=0)的第三信号 V 3 V_3 V3需要哪个相位和幅度?

相图快速直观地解决了这个问题:

在这里插入图片描述

图6:三信号相消干涉

3.2 差异化与整合

相量的微分或积分有助于求解与一阶或二阶电路相关的微分方程。

为了理解如何在相图中表示微分或积分,我们从复数形式开始并考虑相量 A e j ( ω t + ϕ ) Ae^{j(\omega t+\phi)} Aej(ωt+ϕ)

s ( t ) s(t) s(t) 的微分由等式 4 中的表达式给出:

在这里插入图片描述

等式4:复杂交流信号的微分

s ( t ) s(t) s(t)的积分由等式5中的表达式给出:

在这里插入图片描述

等式5:复杂交流信号的积分

虚数单位j可以重写为 e j π / 2 e^{j\pi/2} e/2,因此微分运算类似于将相量乘以ω并进行 + π / 2 r a d +\pi/2rad +π/2rad或+90°的旋转。 积分类似于将相量乘以 1 / ω 1/\omega 1/ω,然后进行 − π / 2 r a d -\pi/2 rad π/2rad 或 -90° 的旋转,如图 7 所示:

在这里插入图片描述

图7:相图中的微分相量和积分相量

考虑一个 RC 串联电路,其中输入电压为正弦参考 V 1 = v 1 e j ω t V_1=v_1e^{j\omega t} V1=v1et,输出电压为未知 V 2 V_2 V2

在这里插入图片描述

图8:RC串联电路

电压通过以下微分方程联系起来,由于推导公式,可以用经典形式(等价符号左侧)或相量符号(右侧)来编写:

在这里插入图片描述

等式6:RC串联电路的微分方程

从这个方程中,我们可以将未知的 V 2 V_2 V2 表示为参考电压的函数:

在这里插入图片描述

可以通过将分子和分母与复共轭相乘来重写:

在这里插入图片描述

等式7:相量 V2 的表达式

根据这个表达式,我们可以在图 9 的相图中表示 RC 电路的相量,然后将两个相量相加以得出 V 2 V_2 V2
在这里插入图片描述

图9:RC 串联电路的输入和输出相量的表示

V 2 V_2 V2 的幅度和相位都可以使用之前解释过的相同过程从该相图中测量。

4、总结

  • 本文展示了一种表示和实现交流信号代数的新方法,称为相量。 相量既可以用复数表示法表示,也可以在复平面上图形化地表示为矢量,其范数表示信号的幅度和角度和相位。
  • 当在同一相图中表示两个或多个信号时,其中一个信号始终充当相位为 0° 的参考信号,与实数轴对齐。 加法运算是可交换的,因此可以通过两种方式实现,但结果相同。 减法的实现与加法类似,但不可交换。
  • 当在同一相图中表示两个或多个信号时,其中一个信号始终充当相位为 0° 的参考信号,与实数轴对齐。 加法运算是可交换的,因此可以通过两种方式实现,但结果相同。 减法的实现与加法类似,但不可交换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/113721.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Pytorch 注意力机制解析与代码实现

目录 什么是注意力机制1、SENet的实现2、CBAM的实现3、ECA的实现4、CA的实现 什么是注意力机制 注意力机制是深度学习常用的一个小技巧,它有多种多样的实现形式,尽管实现方式多样,但是每一种注意力机制的实现的核心都是类似的,就…

【计算机网络】(谢希仁第八版)第一章课后习题答案

1.计算机网络可以向用户提供哪些服务? 答:例如音频,视频,游戏等,但本质是提供连通性和共享这两个功能。 连通性:计算机网络使上网用户之间可以交换信息,好像这些用户的计算机都可以彼此直接连…

036-第三代软件开发-系统时间设置

第三代软件开发-系统时间设置 文章目录 第三代软件开发-系统时间设置项目介绍系统时间设置演示效果QML 实现小伙伴自创 TumblerQt 家 Tumbler C 端实现 总结一下 关键字: Qt、 Qml、 Time、 时间、 系统 项目介绍 欢迎来到我们的 QML & C 项目!…

【VPX630】青翼 基于KU115 FPGA+C6678 DSP的6U VPX通用超宽带实时信号处理平台

板卡概述 VPX630是一款基于6U VPX总线架构的高速信号处理平台,该平台采用一片Xilinx的Kintex UltraScale系列FPGA(XCKU115)作为主处理器,完成复杂的数据采集、回放以及实时信号处理算法。采用一片带有ARM内核的高性能嵌入式处理器…

Nginx负载均衡 以及Linux前后端项目部署

一、Nginx简介 Nginx是一款高性能的开源Web服务器和反向代理服务器。它由俄罗斯的程序设计师Igor Sysoev创建,旨在解决传统Web服务器的性能限制问题。 Nginx采用事件驱动的架构和异步非阻塞的处理方式,使其能够处理大量并发连接,并具备良好…

【分享】winterm ssh登录报错Unkown error

非软文哈,实测Winterm非常好用,唯一的障碍是 某些特定服务器ssh登录报错Unkown error 后经github issue得知,关闭会话设置-ssh选项卡中的 尝试键盘交互认证的勾即可。 https://github.com/kingToolbox/WindTerm/issues/1922

二叉树题目:在二叉树中增加一行

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:在二叉树中增加一行 出处:623. 在二叉树中增加一行 难度 5 级 题目描述 要求 给定一个二叉树的根结…

Vue 数据绑定 和 数据渲染

目录 一、Vue快速入门 1.简介 : 2.MVVM : 3.准备工作 : 二、数据绑定 1.实例 : 2.验证 : 三、数据渲染 1.单向渲染 : 2.双向渲染 : 一、Vue快速入门 1.简介 : (1) Vue[/vju/],是Vue.js的简称,是一个前端框架,常用于构建前端用户…

C++二分查找算法的应用:俄罗斯套娃信封问题

本文涉及的基础知识点 二分查找 题目 给你一个二维整数数组 envelopes ,其中 envelopes[i] [wi, hi] ,表示第 i 个信封的宽度和高度。 当另一个信封的宽度和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗…

assert断言与const修饰指针的妙用(模拟实现strcpy函数)

assert断言 目录 assert断言的妙用: 头文件: 使用方法: const修饰指针的妙用 主要用法 const在*左边 const在*右边 断言和const修饰指针的应用 模拟实现C语言strcpy函数 1、若字符串str1,str2有空指针怎么办? 2.str2改变…

【Unity实战】最全面的库存系统(一)

文章目录 先来看看最终效果前言定义物品定义人物背包物品插槽数据拾取物品物品堆叠绘制UI移动拖拽物品选中物品跟随鼠标移动背包物品交换物品拆分物品物品堆叠完结先来看看最终效果 前言 它又来了,库存系统我前面其实一句做过很多次了,但是这次的与以往的不太一样,这个将是…

微信小程序:两层循环的练习,两层循环显示循环图片大图(大图显示、多层循环)

效果 代码分析 外层循环 外层循环的框架 <view wx:for"{{info}}" wx:key"index"></view> wx:for"{{info}}"&#xff1a;这里wx:for指令用于指定要遍历的数据源&#xff0c;即info数组。当遍历开始时&#xff0c;会依次将数组中的每…

前端架构体系调研整理汇总

1.公司研发人数与前端体系 小型创业公司 前端人数&#xff1a; < 3 人 产品类型&#xff1a; 产品不是非常成熟&#xff0c;比较新颖。 项目流程&#xff1a;不完善&#xff0c;快、紧促&#xff0c;没有固定的时间排期。 技术栈&#xff1a; 没有历史包袱&#xff0c;技…

oracle中关于connect by的语法及实现(前序遍历树)

语法 connect by是是结构化查询中用到的&#xff0c;其基本语法是&#xff1a; 1 select … from tablename 2 start with 条件1 3 connect by 条件2 4 where 条件3; 使用示例 例&#xff1a; create table tree(id int,parentid int); insert into tree values(120,184); …

web:[网鼎杯 2020 青龙组]AreUSerialz

题目 点进题目发现 需要进行代码审计 function __destruct() {if($this->op "2")$this->op "1";$this->content "";$this->process();}这里有__destruct()函数&#xff0c;在对象销毁时自动调用&#xff0c;根据$op属性的值进行…

Python---字符串切片-----序列名称[开始位置下标 : 结束位置下标 : 步长]

字符串切片&#xff1a;是指对操作的对象截取其中一部分的操作。字符串、列表、元组都支持切片操作。 本文以字符串为例。 基本语法&#xff1a; 顾头不顾尾&#xff1a; ----------类似range&#xff08;&#xff09; 范围&#xff0c;顾头不顾尾 相关链接Python----ran…

第6天:信息打点-Web架构篇amp;域名amp;语言amp;中间件amp;数据库amp;系统amp;源码

第6天&#xff1a;信息打点-Web架构篇&域名&语言&中间件&数据库&系统&源码 #知识点&#xff1a; 1、打点-Web架构-语言&中间件&数据库&系统等2、打点-Web源码-CMS开源&闭源售卖&自主研发等 开源&#xff1a;可以上网搜索&#x…

三维模型优势在哪里?如何提升产品自身商业价值?

不少企业、商家都开始使用VR全景展示来宣传推广自己的产品、活动等&#xff0c;虽说VR全景的沉浸式体验&#xff0c;相比于图片、视频而言有着无法取代的优势&#xff0c;但是也不能忘了VR全景另一个大优势&#xff0c;那就是丰富多样的互动性。3D模型展示让产品展示和体验不再…

Stable Diffusion系列(二):ControlNet基础控件介绍

文章目录 线稿提取类Canny&#xff1a;边缘检测SoftEdge&#xff1a;软边缘检测Lineart&#xff1a;精细线稿提取Scribble/Sketch&#xff1a;涂鸦提取MLSD&#xff1a;建筑领域的线条提取 3D提取类Normal map&#xff1a;法线贴图Depth&#xff1a;深度计算Segmentation&#…

unittest与pytest的区别

Unittest vs Pytest 主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面比较unittest和pytest的区别: 用例编写规则 用例前置与后置条件 断言 测试报告 失败重跑机制 参数化 用例分类执行 如果不好看&#xff0c;可以看下面表格&…
最新文章