事务(本地事务与分布式事务)

事务

  • 1 本地事务
    • 1.1 事务的特性
    • 1.2 事务的隔离级别
    • 1.3 事务的传播属性
  • 2 分布式事务
    • 2.1 分布式事务基础
      • 2.1.1 CAP定理
      • 2.1.2 BASE定理
    • 2.2 分布式事务的解决方案
      • 2.2.1 两阶段提交(2PC)
      • 2.2.2 TCC补偿式事务
      • 2.2.3 消息事务+最终一致性

1 本地事务

1.1 事务的特性

事务的概念:事务是逻辑上一组操作,组成这组操作各个逻辑单元,要么一起成功,要么一起失败。

事务的四个特性(ACID):
(1)原子性(atomicity):“原子”的本意是“不可再分”,事务的原子性表现为一个事务中涉及到的多个操作在逻辑上缺一不可。事务的原子性要求事务中的所有操作要么都执行,要么都不执行。
(2)一致性(consistency):一致指的是数据的一致,具体是指:所有数据都处于满足业务规则的一致性状态。一致性原则要求:一个事务中不管涉及到多少个操作,都必须保证事务执行之前数据是正确的,事务执行之后数据仍然是正确的。如果一个事务在执行的过程中,其中某一个或某几个操作失败了,则必须将其他所有操作撤销,将数据恢复到事务执行之前的状态,这就是回滚。
(3)隔离性(isolation):在应用程序实际运行过程中,事务往往是并发执行的,所以很有可能有许多事务同时处理相同的数据,因此每个事务都应该与其他事务隔离开来,防止数据损坏。隔离性原则要求多个事务在并发执行过程中不会互相干扰
(4)持久性(durability):持久性原则要求事务执行完成后,对数据的修改永久的保存下来,不会因各种系统错误或其他意外情况而受到影响。通常情况下,事务对数据的修改应该被写入到持久化存储器中。

1.2 事务的隔离级别

事务并发引起一些读的问题:

  • 脏读 一个事务可以读取另一个事务未提交的数据
  • 不可重复读 一个事务可以读取另一个事务已提交的数据 单条记录前后不匹配
  • 虚读(幻读) 一个事务可以读取另一个事务已提交的数据 读取的数据前后多了点或者少了点

并发写:使用mysql默认的锁机制(独占锁)

解决读问题:设置事务隔离级别

  • read uncommitted(0)
  • read committed(2)
  • repeatable read(4)
  • Serializable(8)

隔离级别越高,性能越低。

imagepng
一般情况下:脏读是不可允许的,不可重复读和幻读是可以被适当允许的。

1.3 事务的传播属性

Spring中的7个事务传播行为:

事务行为说明
PROPAGATION_REQUIRED支持当前事务,假设当前没有事务。就新建一个事务
PROPAGATION_SUPPORTS支持当前事务,假设当前没有事务,就以非事务方式运行
PROPAGATION_MANDATORY支持当前事务,假设当前没有事务,就抛出异常
PROPAGATION_REQUIRES_NEW新建事务,假设当前存在事务。把当前事务挂起
PROPAGATION_NOT_SUPPORTED以非事务方式运行操作。假设当前存在事务,就把当前事务挂起
PROPAGATION_NEVER以非事务方式运行,假设当前存在事务,则抛出异常
PROPAGATION_NESTED如果当前存在事务,则在嵌套事务内执行。如果当前没有事务,则执行与PROPAGATION_REQUIRED类似的操作。

2 分布式事务

2.1 分布式事务基础

2.1.1 CAP定理

分布式存储系统的CAP原理(分布式系统的三个指标):
(1)Consistency(一致性):在分布式系统中的所有数据备份,在同一时刻是否同样的值。对于数据分布在不同节点上的数据来说,如果在某个节点更新了数据,那么在其他节点如果都能读取到这个最新的数据,那么就称为强一致,如果有某个节点没有读取到,那就是分布式不一致。

(2) Availability(可用性):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(要求数据需要备份)

(3)Partition tolerance(分区容忍性):大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。

  CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们无法避免的。所以我们只能在一致性和可用性之间进行权衡,没有系统能同时保证这三点。要么选择CP、要么选择AP。
imagepng

2.1.2 BASE定理

  BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。接下来看看BASE中的三要素:

(1)Basically Available(基本可用)基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服务层也可能只提供降级服务。这就是损失部分可用性的体现。

(2)Soft state(软状态)软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysql replication的异步复制也是一种体现。

(3)Eventually consistent(最终一致性)最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。

BASE模型是传统ACID模型的反面,不同于ACID,BASE强调牺牲高一致性,从而获得可用性,数据允许在一段时间内的不一致,只要保证最终一致就可以了

2.2 分布式事务的解决方案

主流的解决方案如下:
(1) 基于XA协议的两阶段提交(2PC)
(2)柔性事务-TCC事务
(3)柔性事务-最终一致性

2.2.1 两阶段提交(2PC)

  2PC即两阶段提交协议,是将整个事务流程分为两个阶段,准备阶段(Prepare phase)、提交阶段(commit phase),2是指两个阶段,P是指准备阶段,C是指提交阶段。
imagepng

第一阶段: 事务协调器要求每个涉及到事务的数据库预提交(precommit)此操作,并反映是否可以提交.

第二阶段: 事务协调器要求每个数据库提交数据。

其中,如果有任何一个数据库否决此次提交,那么所有数据库都会被要求回滚它们在此事务中的那部分信息。

目前主流数据库均支持2PC【2 Phase Commit】

XA 是一个两阶段提交协议,又叫做 XA Transactions。

  总的来说,XA协议比较简单,而且一旦商业数据库实现了XA协议,使用分布式事务的成本也比较低。但是,XA也有致命的缺点,那就是性能不理想,特别是在交易下单链路,往往并发量很高,XA无法满足高并发场景。

(1) 两阶段提交涉及多次节点间的网络通信,通信时间太长!
(2)事务时间相对于变长了,锁定的资源的时间也变长了,造成资源等待时间也增加好多。
(3) XA目前在商业数据库支持的比较理想,在mysql数据库中支持的不太理想,mysql的XA实现,没有记录prepare阶段日志,主备切换会导致主库与备库数据不一致。许多nosql也没有支持XA,这让XA的应用场景变得非常狭隘。

2.2.2 TCC补偿式事务

TCC 是一种编程式分布式事务解决方案。

TCC 其实就是采用的补偿机制,其核心思想是:针对每个操作,都要注册一个与其对应的确认和补偿(撤销)操作。TCC模式要求从服务提供三个接口:Try、Confirm、Cancel。

  • Try: 主要是对业务系统做检测及资源预留
  • Confirm: 真正执行业务,不作任何业务检查;只使用Try阶段预留的业务资源;Confirm操作满足幂等性。
  • Cancel :释放Try阶段预留的业务资源;Cancel操作满足幂等性。

整个TCC业务分成两个阶段完成:
imagepng

第一阶段: 主业务服务分别调用所有从业务的try操作,并在活动管理器中登记所有从业务服务。当所有从业务服务的try操作都调用成功或者某个从业务服务的try操作失败,进入第二阶段。

第二阶段: 活动管理器根据第一阶段的执行结果来执行confirm或cancel操作。如果第一阶段所有try操作都成功,则活动管理器调用所有从业务活动的confirm操作。否则调用所有从业务服务的cancel操作。

缺点:

  • Canfirm和Cancel的幂等性很难保证。
  • 这种方式缺点比较多,通常在复杂场景下是不推荐使用的,除非是非常简单的场景,非常容易提供回滚Cancel,而且依赖的服务也非常少的情况。
  • 这种实现方式会造成代码量庞大,耦合性高。而且非常有局限性,因为有很多的业务是无法很简单的实现回滚的,如果串行的服务很多,回滚的成本实在太高。

2.2.3 消息事务+最终一致性

  基于消息中间件的两阶段提交往往用在高并发场景下,将一个分布式事务拆成一个消息事务(A系统的本地操作+发消息)+B系统的本地操作,其中B系统的操作由消息驱动,只要消息事务成功,那么A操作一定成功,消息也一定发出来了,这时候B会收到消息去执行本地操作,如果本地操作失败,消息会重投,直到B操作成功,这样就变相地实现了A与B的分布式事务。
imagepng

虽然上面的方案能够完成A和B的操作,但是A和B并不是严格一致的,而是最终一致的,我们在这里牺牲了一致性,换来了性能的大幅度提升。当然,这种玩法也是有风险的,如果B一直执行不成功,那么一致性会被破坏,具体要不要用,还是得看业务能够承担多少风险。

适用于高并发最终一致
低并发基本一致:二阶段提交
高并发强一致:没有解决方案

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/126544.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mysql视图应用

现在,我们将创建一个视图,将员工的姓名、部门和工资信息组合在一起。 CREATE VIEW EmployeeSalaryView AS SELECT e.FirstName, e.LastName, e.Department, s.MonthlySalary FROM Employees e JOIN Salary s ON e.EmployeeID s.EmployeeID;通过这个视图…

SQLChat 的 RBAC 之旅

去年 ChatGPT 在科技圈大火,到今年彻底破圈。各个领域都有相应的一些产品,数据库领域集中在 AI SQL,自然语言转 SQL,或者利用自然语言来管理数据库等。今天我们来体验一下该领域的 SQLChat 这款 AI 数据库客户端。 今天我们预设一…

招聘信息采集

首先&#xff0c;我们需要使用PHP的curl库来发送HTTP请求。以下是一个基本的示例&#xff1a; <?php // 初始化curl $ch curl_init();// 设置代理 curl_setopt($ch, CURLOPT_PROXY, "jshk.com.cn");// 设置URL curl_setopt($ch, CURLOPT_URL, "http://www…

不同语言采集【淘宝1688拼多多API】平台数据的方式

首先我们以taobao商品页面采集商品详情数据为例&#xff1a; 请求方式&#xff1a;HTTPS POST GET 请求地址&#xff1a;API接口 请求参数 请求参数&#xff1a;num_iid669646899650&is_promotion1 参数说明&#xff1a;num_iid:淘宝商品ID is_promotion:是否获取取…

web前端JS基础------制作一个获取验证码

1&#xff0c;需要一个定时器&#xff0c;和一个button&#xff0c;通过点击事件启动获取验证码 2&#xff0c;参考代码如下 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><…

RapidSSL证书

RapidSSL是一家经验丰富的证书颁发机构&#xff0c;主要专注于提供标准和通配符SSL证书的域验证SSL证书。在2017年被DigicertCA收购后&#xff0c;RapidSSL改进了技术并开始使用现代基础设施。专注于为小型企业和网站提供基本安全解决方案的SSL加密。RapidSSL它具有强大的浏览器…

Python中的Socket编程

目录 一、概述 二、Socket的基本概念 三、Python中的Socket编程 四、Socket的高级功能 1、多路复用&#xff08;multiplexing&#xff09;&#xff1a; 2、非阻塞式IO&#xff1a; 3、SSL加密&#xff1a; 4、服务端编程&#xff1a; 五、Socket编程的常见问题及解决方…

基于Quartz实现动态定时任务

生命无罪&#xff0c;健康万岁&#xff0c;我是laity。 我曾七次鄙视自己的灵魂&#xff1a; 第一次&#xff0c;当它本可进取时&#xff0c;却故作谦卑&#xff1b; 第二次&#xff0c;当它在空虚时&#xff0c;用爱欲来填充&#xff1b; 第三次&#xff0c;在困难和容易之…

深入探析隔离CAN收发器NSI1050-DDBR各项参数

NSI1050-DDBR是一个隔离的CAN收发器&#xff0c;可以完全与ISO11898-2标准兼容。 NSI1050-DDBR集成了两个通道的数字隔离器和一个高电平可靠性CAN收发器。 数字隔离器是基于Novosense电容隔离技术的氧化硅隔离。 高度集成的解决方案可以帮助简化系统设计并提高可靠性。 NSI1050…

Yolov8模型训练报错:torch.cuda.OutOfMemoryError

最近在使用自己的数据训练Yolov8模型的时候遇到了很多错误&#xff0c;下面将逐一解答。 问题报错 在训练过程中红字报错&#xff1a;torch.cuda.OutOfMemoryError: CUDA out of memory. 后面还会跟着一大段报错&#xff1a; Tried to allocate XXX MiB (GPU 0; XXX GiB to…

Vue23-props配置功能

Vue2&3-props配置功能 Vue2-props配置 功能&#xff1a;接收从其他组件传过来的数据&#xff0c;将数据从静态转为动态注意&#xff1a; 同一层组件不能使用props&#xff0c;必须是父组件传子组件的形式。父组件传数据&#xff0c;子组件接收数据。不能什么数据都接收&a…

EMNLP2023 | LLM作用下的成分句法分析基础研究

深度学习自然语言处理 原创作者&#xff1a;cola 自训练已被证明是一种有效的针对跨域任务的方法。传统的自训练方法依赖于有限且低质量的源语料库。为克服这一限制&#xff0c;本文提出用大型语言模型(LLM)增强自训练&#xff0c;以迭代地生成特定领域的语料库。并针对句法成分…

JavaEE初阶学习:Linux 基本使用和 web 程序部署

1.Linux的基本认识 Linux 是一个操作系统.(搞管理的系统) 和Windows都是同类产品~~ Linux 实际的场景: 1.服务器 2.嵌入式设备 3.移动端(手机)Android 其实就是Linux 1991年,还在读大学的 芬兰人 Linus Benedict Torvalds,搞了一个Linux 这样的系统0.01版,正式发布了~ 后…

Docker学习——⑥

文章目录 1、什么是存储卷?2、为什么需要存储卷?3、存储卷分类4、管理卷 Volume5、绑定卷 bind mount6、临时卷 tmpfs7、综合实战-MySQL 灾难恢复8、常见问题 1、什么是存储卷? 存储卷就是将宿主机的本地文件系统中存在的某个目录直接与容器内部的文件系统上的某一目录建立…

js各种简单事件处理(整理)

**## 获取当天昨天日期** // 当天日期 const today new Date();// 格式化当天日期为 YYYY-MM-DD 格式 const formattedToday today.toISOString().slice(0, 10);// 昨天日期 const yesterday new Date(); yesterday.setDate(yesterday.getDate() - 1);// 格式化昨天日期为 Y…

并查集模版以及两道例题

&#x1f4af; 博客内容&#xff1a;并查集 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准C后端工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎私信&#xff01; &#x1f496; 欢迎大家&#xff1a;这里是C…

DVWA - 2

文章目录 SQL Injectionlowmediumhigh SQL Injection low 输入 1&#xff0c;可以展示 id 1 的人员信息&#xff1a;输入 1’&#xff0c;有报错信息。可以看出是mysql数据库&#xff0c;‘‘1’’’ 去除两边的引号&#xff0c;再去除1两端的引号&#xff0c;可以看出闭合符…

Thales hsm是什么意思,有什么作用?

Thales HSM是一种硬件安全模块(Hardware Security Module&#xff0c;HSM)&#xff0c;是Thales公司开发的一种安全设备&#xff0c;用于保护和管理密码和数字证书。HSM是一种物理设备&#xff0c;通常用于需要高度安全性的环境中&#xff0c;如政府机构、金融机构、大型企业等…

底座(基座)模型是如何训练的?

我们把LLM的基本训练步骤分为两步&#xff0c;预训练和对齐&#xff1b;预训练我们非常熟悉&#xff0c;是bert-finetuning时代的基本原理&#xff0c;只不过LLM一般遵循自回归的逻辑&#xff0c;因此使用GPT模型的预训练方式&#xff1a;CLM&#xff08;具备因果关系的MLM&…

【Java 进阶篇】Java Filter 过滤器拦截路径配置详解

过滤器&#xff08;Filter&#xff09;是 Java Web 应用中一种强大的组件&#xff0c;它可以用于在请求到达目标资源之前或响应返回客户端之前执行一些预处理或后处理操作。其中&#xff0c;过滤器的拦截路径配置是非常重要的&#xff0c;它决定了过滤器会拦截哪些请求。在本文…