深度学习 python opencv 动物识别与检测 计算机竞赛

文章目录

  • 0 前言
  • 1 深度学习实现动物识别与检测
  • 2 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 3 YOLOV5
    • 3.1 网络架构图
    • 3.2 输入端
    • 3.3 基准网络
    • 3.4 Neck网络
    • 3.5 Head输出层
  • 4 数据集准备
    • 4.1 数据标注简介
    • 4.2 数据保存
  • 5 模型训练
    • 5.1 修改数据配置文件
    • 5.2 修改模型配置文件
    • 5.3 开始训练模型
  • 6 实现效果
    • 6.1图片效果
    • 6.2 视频效果
    • 6.3 摄像头实时效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 深度学习实现动物识别与检测

学长实现的动态检测效果,精度还是非常高的!
在这里插入图片描述

2 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

2.3 激活函数

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

3 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

3.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

3.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

3.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

3.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

3.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

相关代码

  class Detect(nn.Module):
  stride = None  # strides computed during build
  onnx_dynamic = False  # ONNX export parameter
    
  def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
      super().__init__()
      self.nc = nc  # number of classes
      self.no = nc + 5  # number of outputs per anchor
      self.nl = len(anchors)  # number of detection layers
      self.na = len(anchors[0]) // 2  # number of anchors
      self.grid = [torch.zeros(1)] * self.nl  # init grid
      self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
      self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
      self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
      self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
  def forward(self, x):
      z = []  # inference output
      for i in range(self.nl):
          x[i] = self.m[i](x[i])  # conv
          bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
          x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    

          if not self.training:  # inference
              if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                  self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    
              y = x[i].sigmoid()
              if self.inplace:
                  y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                  y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
              else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                  xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                  wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  y = torch.cat((xy, wh, y[..., 4:]), -1)
              z.append(y.view(bs, -1, self.no))
    
      return x if self.training else (torch.cat(z, 1), x)

  def _make_grid(self, nx=20, ny=20, i=0):
      d = self.anchors[i].device
      if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
          yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
      else:
          yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
      grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
      anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
          .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
      return grid, anchor_grid

4 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

4.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

4.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

5.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为animal_data.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,这里识别有6种动物,所以这里填写6;最后填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

5.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

5.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI



    #部分代码
    from PyQt5 import QtCore, QtGui, QtWidgets

    class Ui_Win_animal(object):
        def setupUi(self, Win_animal):
            Win_animal.setObjectName("Win_animal")
            Win_animal.resize(1107, 868)
            Win_animal.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
    "ui.pushButton->setStyleSheet(qstrStylesheet);")
            self.frame = QtWidgets.QFrame(Win_animal)
            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
            self.frame.setObjectName("frame")
            self.pushButton = QtWidgets.QPushButton(self.frame)
            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton.setFont(font)
            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.frame)
            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton_2.setFont(font)
            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.frame)
            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
            QtCore.QMetaObject.connectSlotsByName(Win_animal)


6.1图片效果

在这里插入图片描述

6.2 视频效果

在这里插入图片描述

6.3 摄像头实时效果

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/130367.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

海康Visionmaster-通讯管理:ModBus 通信发送非整型 数据的方法

Modbus 通信发送数据只能为 Int 类型,如下图所示: 可以发送 Int 和 Float 数据,如下图所示 通信设备配置如下: 发送事件配置如下: 通信管理界面显示有问题,显示为 Int 类型存在一定误导;可以…

Powerpoint不小心被覆盖?PPT误删文件如何恢复?

PowerPoint不小心删除了,这可能是众多学生和工作人员最头痛的事情了。PPT被覆盖或误删可能意味着几个小时的努力付之东流。那么PPT覆盖的文档要如何救回来呢?小编将会在本篇文章中为大家分享几个解决方案,使PPT文档覆盖还原操作成为可能&…

iOS代码混淆和加固技术详解

目录 摘要: 本文介绍了iOS开发中常用的代码混淆和加固技术,包括数据加密、应用加壳和代码混淆。其中,重点讨论了代码混淆的实现方法和注意事项,并推荐了一些相关的工具和库。 引言 代码混淆和加固 数据加密 应用加壳 代码混…

建设大型综合运维平台,对接集成多厂商网管系统

当前,云计算、大数据、人工智能等IT技术迅猛发展,企业的信息化步入了一个崭新的时代,企业规模不断壮大,业务不断拓展,企业信息化依赖的网络结构和IT技术越来越复杂。因建设时期等原因,企业网络中分布着不同…

家庭安全计划 挑战赛| 溺水预防

溺水预防 从了解到行动 家庭安全计划 | 少年急救官 地震避险逃生该怎么做? 起火了该如何应对? 哪些行为容易导致溺水? 家庭风险隐患有哪些? 家庭逃生演练四步骤你会吗? 国际救助儿童会(英国&#xff…

2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调

模型输入无标签文本(Text without annotation),通过消耗大量计算资源预训练(Pre-train)得到一个可以读懂文本的模型,在遇到有监督的任务是微调(Fine-tune)即可。 最具代表性是BERT&…

百度智能云正式上线Python SDK版本并全面开源!

文章目录 1. SDK的优势2. 千帆SDK:快速落地LLM应用3. 如何快速上手千帆SDK3.1 SDK快速启动3.2 SDK进阶指引3.3 通过Langchain接入千帆SDK 4. 开源社区 百度智能云千帆大模型平台再次升级!在原有API基础上,百度智能云正式上线Python SDK&#…

数据结构-图的遍历

广度优先遍历(BFS) 树的遍历:不存在“回路”,搜索相邻的结点时,不可能搜到已经访问过的结点 图的遍历:搜索相邻的顶点时,有可能搜到已经访问过的顶点 要点: 找到与一个顶点相邻的所…

[100天算法】-颜色分类(day 69)

题目描述 给定一个包含红色、白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。此题中,我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。注意: 不能使…

在 Arduino IDE 2.0 中安装 ESP32 板(Windows、Mac OS X、Linux)

有一个新的 Arduino IDE——Arduino IDE 2.0(测试版)。在本教程中,您将学习如何在 Arduino IDE 2.0 中安装 ESP32 板并将代码上传到板。本教程与 Windows、Mac OS X 和 Linux 操作系统兼容。 据 Arduino 网站称:“ Arduino IDE 2.…

CCLink转Modbus TCP网关_MODBUS报文配置

兴达易控CCLink转Modbus TCP网关是一种功能强大的设备,可实现两个不同通信协议之间的无缝对接。它能够将CCLink协议转换为Modbus TCP协议,并通过报文配置实现灵活的通信设置。兴达易控CCLink转Modbus TCP网关可以轻松实现CCLink和Modbus TCP之间的数据转…

如何在 Idea 中修改文件的字符集(如:UTF-8)

以 IntelliJ IDEA 2023.2 (Ultimate Edition) 为例,如下: 点击左上角【IntelliJ IDEA】->【Settings…】,如下图: 从弹出页面的左侧导航中找到【Editor】->【File Encodings】,并将 Global Encoding、Project E…

SDN和NFV笔记

目录 SDN SDN的引入 SDN的概念 SDN网络部署的方式 SDN架构 OpenFlow SDN与传统网络的区别 SDN的应用 SDN的优点 NFV NFV的概念: NFV的架构: NFV相比于传统物理网元: NFV与SDN的关系 NFV与SDN的相似点 NFV与SDN的不同 SDN SD…

贝锐蒲公英智慧运维方案:实现远程网络监控、管理、维护工业设备

为了提升运维效率,能够及时发现和响应设备的故障、异常和潜在问题。 越来越多的企业都在搭建“集中式”的远程智慧运维体系,以提高运维效率和降低成本。 但是,受限于网络,将不同地域的资源和信息进行整合,实现统一管理…

No source control providers registered

使用vscode时碰到这个问题 git扩展没启动

Linux-vi/vim命令

1.vim/vi编辑器的三种工作模式 ①命令模式 ②输入模式 i打开 ③底线命令模式 :打开 2.命令模式 vi 文件路径 vim 文件路径 如果文件不存在则创建新的文件,存在则使用vi/vim打开 3.快捷键 模式命令描述命令模式i在当前光标位置进入输入模式命令模式a在当前光标位置之…

Java11新增特性

前言 在前面的文章中,我们已经介绍了 Java9的新增特性 和 Java10的新增特性 ,下面我们书接上文,来介绍一下Java11的新增特性 版本简介 Java 11 是 Java 平台的最新版本,于2018年9月25日发布。这个版本是自Java 8以来最重要的更新之一&…

【Mysql】next-key 锁范围

背景 Mysql RR场景下通过next-key 锁解决了幻读的问题,而幻读通常是由 insert 新增的数据导致。所以next-key锁最终通过锁机制防止了一定条件下的新增数据从而解决了幻读问题。 规律 next-key锁可以由以下几条规律总结出锁范围 next-key会对查询过程中访问到的对…

jenkins邮件告警

构建失败邮件通知 配置自己的邮箱 配置邮件服务,密码是授权码 添加构建后操作 扩展 配置流水线 添加扩展 钉钉通知 Jenkins安装钉钉插件 钉钉添加机器人 加签 https://oapi.dingtalk.com/robot/send?access_token98437f84ffb6cd64fa2d7698ef44191d49a11…

CSS特效005:绘制一个环环相扣的五个环

css实战中,怎么制作这样的一个环环相扣的五个环呢? 绘制五个圈圈很容易,关键是要环环相扣,尤其要注意环环相交部分的处理。这里要用到transform-style: preserve-3d; 和 transform: rotateY( 1deg ) 等关键的css技术。 效果图 源…