MXNet中图解稀疏矩阵(Sparse Matrix)的压缩与还原

1、概述

对于稀疏矩阵的解释,就是当矩阵里面零元素远远多于非零元素,且非零元素没有规律,这样的矩阵就叫做稀疏矩阵,反过来就是稠密矩阵,其中非零元素的数量与所有元素的比值叫做稠密度,一般稠密度小于0.05的都叫做稀疏矩阵。
我们知道压缩文件的时候,可以将大文件压缩成一个很小的文件,这是因为存在很多冗余,我们通过压缩算法将其进行压缩,同样的,既然矩阵里面存在很多零元素,我们也是可以将其剔除,这样就可以节省大量的存储空间了,而且可以提高计算的性能节约大量时间。其应用非常广泛,计算流体力学、统计物理、电路模拟、图像处理、纳米材料计算等。

2、压缩稀疏矩阵

那如何对其进行压缩以及还原呢,这里会将稀疏矩阵压缩成三个数组data、indptr、indices,让后通过这三个数组又可以进行还原成原来的矩阵。

data:只存储非零元素
indptr:存储的是非零元素每行的累加数量,这样就能知道每行有多少个非零元素,当然这里为了计算每行的数量,也就是通过indptr[i+1] - indptr[i]可以计算到第i行的数量,为了便于计算第一行的数量,这里数组第一个元素设定为0
indices:存储非零元素所在列的索引值,这样就可以定位其在稀疏矩阵中的位置

通过这三个数组,我们就能够快速地找到任意非零元素的位置,从而进行矩阵运算和求解,大大减少计算时间。
我们通常会使用一种称为压缩稀疏行(Compressed Sparse Row,CSR)或者压缩稀疏矩阵(Compressed Sparse Matrix,CSM)的存储方式。
接下来我们看下载MXNet中的实际应用。

3、示例1

3.1、拆分稀疏矩阵

from mxnet import nd
import mxnet as mx
n1 = nd.array([[1,0,0,0],[4,0,2,0],[0,0,0,3],[5,1,0,0]])
/*
[[1. 0. 0. 0.]
 [4. 0. 2. 0.]
 [0. 0. 0. 3.]
 [5. 1. 0. 0.]]
<NDArray 4x4 @cpu(0)>
*/

稠密矩阵转换成稀疏矩阵 

n1_csr = n1.tostype('csr')
<CSRNDArray 4x4 @cpu(0)>

非零元素

n1_data = n1_csr.data
[1. 4. 2. 3. 5. 1.]
<NDArray 6 @cpu(0)>

非零元素每行的累加数量

n1_indptr = n1_csr.indptr
[0 1 3 4 6]
<NDArray 5 @cpu(0)>

这里就可以得到第几行有几个非零元素,比如第二行有两个非零元素,我们通过 n1_indptr[2]-n1_indptr[1] 即可获取。

非零元素的位置

n1_indices = n1_csr.indices
[0 0 2 3 0 1]
<NDArray 6 @cpu(0)>

这样就将n1这样一个稀疏矩阵拆分成了三个数组,尤其是在实践中会经常碰见大的稀疏矩阵,这样拆分的小数组,就起到了很好的压缩的效果。

3.2、稀疏转换稠密

前面是稠密矩转换成稀疏矩阵,当然也可以将稀疏矩阵转换成稠密矩阵,两种方法,最简单的就是直接强制类型转换:

n1_csr.asnumpy()
array([[1., 0., 0., 0.],
       [4., 0., 2., 0.],
       [0., 0., 0., 3.],
       [5., 1., 0., 0.]], dtype=float32)

另外一种方法就是将三个拆分的数组进行组合:

n1_o = nd.sparse.csr_matrix((n1_data, n1_indices, n1_indptr), shape = (4, 4))
n1_o.asnumpy()
array([[1., 0., 0., 0.],
       [4., 0., 2., 0.],
       [0., 0., 0., 3.],
       [5., 1., 0., 0.]], dtype=float32)

这里还可以对形状进行指定,比如只截取3x3的矩阵:

n1_o = nd.sparse.csr_matrix((n1_data, n1_indices, n1_indptr), shape = (3,3))
n1_o.asnumpy()
array([[1., 0., 0.],
       [4., 0., 2.],
       [0., 0., 0.]], dtype=float32)

也可以直接定义为稀疏矩阵:

src = nd.sparse.zeros('csr', (3,3))
<CSRNDArray 3x3 @cpu(0)>

3.3、不同上下文比较

from mxnet import nd
import mxnet as mx

x = nd.ones((2,3)) # 默认是CPU
y = x.as_in_context(mx.cpu())
z = x.as_in_context(mx.gpu())

y is x # True
z is x # False

就算它们的值是一样的,不在同一个上下文的值也是不能比较,这里很明显一个在CPU上计算,另一个是在GPU上计算。

4、示例2

再来看一个例子进行巩固下,后面也会以这个例子做一张图,了解稀疏矩阵的拆分原理。

也就是在上面例子增加一行全是0元素,这样就更加明白那个累加数量indptr的含义

from mxnet import nd
import mxnet as mx

n2 = nd.array([[1,0,0,0],[4,0,2,0],[0,0,0,0],[0,0,0,3],[5,1,0,0]])
[[1. 0. 0. 0.]
 [4. 0. 2. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 3.]
 [5. 1. 0. 0.]]
<NDArray 5x4 @cpu(0)>
n2_csr = n2.tostype('csr')
<CSRNDArray 5x4 @cpu(0)>

n2_data = n2_csr.data
[1. 4. 2. 3. 5. 1.]
<NDArray 6 @cpu(0)>

n2_indptr = n2_csr.indptr
[0 1 3 3 4 6]
<NDArray 6 @cpu(0)>

n2_indices = n2_csr.indices
[0 0 2 3 0 1]
<NDArray 6 @cpu(0)>

5、图解

有了以上的介绍,应该都很熟悉这个稀疏矩阵,最后本人画了一张图,这样更能直观感受下稀疏矩阵拆分成三个数组的整个过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/132799.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python开发运维:Python3.7使用QQ邮箱发送不同类型邮件

目录 一、理论 1.邮件发送 二、实验 1.Python3.7使用QQ邮箱发送普通邮件 2.Python3.7使用QQ邮箱发送包含图片与附件的邮件 三、问题 1.Pycharm中如何放大和缩小代码界面 一、理论 1.邮件发送 &#xff08;1&#xff09;概念 SMTP&#xff08;Simple Mail Transfer Pro…

Linux AMH 服务器管理面板远程访问

文章目录 1. 前言2. Linux 安装AMH 面板3. 本地访问AMH 面板4. Linux安装Cpolar5. 配置AMH面板公网地址6. 远程访问AMH面板7. 固定AMH面板公网地址8、结语 1. 前言 AMH 是一款基于 Linux 系统的服务器管理面板&#xff0c;它提供了一系列的功能&#xff0c;包括网站管理、FTP …

Linux-用户与用户组,权限

1.用户组管理&#xff08;以下命令需root用户执行&#xff09; ①创建用户组 groupadd 用户组名 ②删除用户组 groupdel 用户组名 2.用户管理&#xff08;以下命令需root用户执行&#xff09; ①创建用户 useradd [-g -d] 用户名 >-g&#xff1a;指定用户的组&#xff0c;不…

颠覆人工智能计算硬件的新计算技术

颠覆人工智能计算硬件的新计算技术 图纸解释说明参考网址加法器模拟解析图纸 解释说明 简单的介绍 使用一个小的llm 模拟 计算最小单元加法器 等硬件 在使用 简单的 电阻矩阵模拟矩阵计算 固化llm 参数代替 半导体硬件 而后组成 大规模人工智能计算 参考网址 加法器 但是直接…

TCP与UDP

文章目录 TCP与UDP传输层的作用端口号UDPTCPUDP首部的格式TCP首部格式 TCP与UDP TCP/IP中有两个具有代表性的传输层协议&#xff0c;它们分别是TCP和UDP。TCP提供可靠的通信传输&#xff0c;而UDP则常被用于让广播和细节控制交给应用的通信传输。总之&#xff0c;根据通信的具…

win10使用mingw安装OpenCV4.8

1. cmake安装 下载链接如下https://github.com/Kitware/CMake/releases/download/v3.27.7/cmake-3.27.7-windows-x86_64.zip 解压后放到指定目录后&#xff0c;添加bin目录到环境变量即可。 2. mingw安装 下载链接如下(下图的x86_64-posix-sjlj)&#xff1a; Download x86_…

mybatis的简单教程

整体就是mysql里存了一张表&#xff0c;然后在java程序里用mybatis把数据读出来的一个简单示例。 库 blog里有一张表 article 整个项目就是增加了这3个文件 首先是mybatis-config.xml文件 <?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE c…

【操作系统内核】线程

【操作系统内核】线程 为什么需要线程 比如我要做一个视频播放器&#xff0c;就需要实现三个功能&#xff1a; ① 从磁盘读取视频数据 ② 对读取到的视频数据进行解码 ③ 对解码的数据进行播放 如果串行执行&#xff08;通过一个进程来执行&#xff09;&#xff1a; 那么…

【MySQL】rank()、row_number()、dense_rank()用法详解

建表测试 测试表数据&#xff1a;test1 CREATE DATABASE /*!32312 IF NOT EXISTS*/db_test /*!40100 DEFAULT CHARACTER SET utf8 */; USE db_test; /*Table structure for table test1 */ DROP TABLE IF EXISTS test1; CREATE TABLE test1 ( id int(10) NOT NULL, score i…

数据结构从未如此简单——图(一)

文章目录 前言图的初印象教科书力扣工作中的实际应用我们的学习方法 前言 个人感觉数据结构学习最大的难点就是抽象。这些概念和算法都是从许多源问题中抽离、精炼、总结出来的。我们学习的看似是最精华的部分&#xff0c;但是忽略了推导过程&#xff0c;很容易变成死记硬背&a…

C语言求解有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?

完整代码&#xff1a; /*有一对兔子&#xff0c;从出生后第3个月起每个月都生一对兔子&#xff0c;小兔子长到第三个月后每个月 又生一对兔子&#xff0c;假如兔子都不死&#xff0c;问每个月的兔子总数为多少&#xff1f; 程序分析&#xff1a; 兔子的规律为数列1,1,2,3,5,8…

MySQL中的json使用注意

MySQL中json是一种重要的数据类型 好的点在于其不必事先定义列得名称啥的 不过不要将明显的关系型数据作为json来存储&#xff0c;例如用户余额、姓名、身份证等&#xff0c;这些是用户必须包含的数据 json适合存储的是给每个用户&#xff08;或者物品&#xff09;打的标签&…

超简单的Linux FTP服务搭建教程

目录 前言1、检查vsftp是否已安装2、安装vsftpd3、启动ftp服务4、测试ftp服务5、上传文件配置总结 前言 本文记录了在Kylin Linux Desktop V10(SP1)系统上搭建FTP服务的过程。FTP是File Transfer Protocol的缩写&#xff0c;译为文件传输协议&#xff0c;是用于在网络上进行文…

docker复制镜像文件

一、复制镜像 #1. 查找本机已有的镜像docker images |grep xxxx#2. 将镜像复制出来指向到xxxx.tar的文件中 docker save 343cca04e31d > xxxx.tareg: 二、加载镜像 直接将拷贝好的镜像包直接加载即可 docker load < myimage.tar

NO.304 二维区域和检索 - 矩阵不可变

题目 给定一个二维矩阵 matrix&#xff0c;以下类型的多个请求&#xff1a; 计算其子矩形范围内元素的总和&#xff0c;该子矩阵的 左上角 为 (row1, col1) &#xff0c;右下角 为 (row2, col2) 。 实现 NumMatrix 类&#xff1a; NumMatrix(int[][] matrix) 给定整数矩阵 …

组成原理备考学习 day2 (2.1)

组成原理备考学习 day2 第二章 数据的表示和运算2.1 数制和编码2.1.1 进位计数法进制转换BCD码 2.1.4 字符2.1.5 校验原理2.1.6 海明校验码2.1.7 循环冗余校验码 第二章 数据的表示和运算 2.1 数制和编码 2.1.1 进位计数法 进制转换 16进制的字母为H BCD码 2.1.4 字符 2.…

基于CST的电磁感应透明设计与机制研究

前言 电磁感应透明&#xff08;EIT&#xff09;最早在量子力学中提出&#xff0c;但是量子系统实验条件十分苛刻且费用较高&#xff0c;超材料的出现对电磁感应透明的研究提供了一种新的方法。利用超材料单元结构设计灵活&#xff0c;通过排列不同结构可以实现操控电磁波而且能…

Arduino到底适不适合做产品

文章目录 一、Arduino性能很低&#xff0c;不如树莓派等开发板&#xff0c;所以不要用Arduino做开发二、Arduino程序效率很低&#xff0c;所以不要用Arduino做开发三、Arduino只能开发玩具&#xff0c;不能做产品四、Arduino开发板成本太高&#xff0c;不适合做产品总结个人见解…

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解

【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】 GoogLeNet(InceptionV2)模型算法详解前言GoogLeNet(InceptionV2)讲解Batch Normalization公式InceptionV2结构InceptionV2特殊结构GoogLeNet(I…

[量化投资-学习笔记011]Python+TDengine从零开始搭建量化分析平台-MACD金死叉策略回测

在上一章节 MACD金死叉中结束了如何根据 MACD 金死叉计算交易信号。 目录 脚本说明文档&#xff08;DevChat 生成&#xff09;MACD 分析脚本安装依赖库参数配置查询与解析数据计算 MACD 指标判断金叉和死叉计算收益绘制图形运行脚本 本次将根据交易信号&#xff0c;模拟交易。更…
最新文章