【Hadoop】MapReduce详解

🦄 个人主页——🎐开着拖拉机回家_大数据运维-CSDN博客 🎐✨🍁

🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁🍁🪁🍁🪁 🪁🍁🪁🍁🪁🍁🪁🍁🪁🍁🪁🍁

感谢点赞和关注 ,每天进步一点点!加油!

目录

一、MapReduce概述

1. 1 MapReduce 介绍

1.2 MapReduce 定义

1.3 MapReduce优缺点

1.2.1.优点

1.2.2.缺点

1.4 MapReduce框架结构

二、WordCount 案例

三、MapReduce的运行机制详解

3.1 MapTask 工作机制

3.2 ReduceTask 工作机制

3.3 Shuffle 过程


一、MapReduce概述


1. 1 MapReduce 介绍


MapReduce思想在生活中处处可见。MapReduce 的思想核心是“分而治之”,适用于大规模数据处理场景。

  • Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。
  • Reduce负责“合”,即对map阶段的结果进行全局汇总。
  • MapReduce运行在YARN集群。
     

这两个阶段合起来正是MapReduce思想的体现。

1.2 MapReduce 定义


MapReduce是面向大数据并行处理的计算模型、框架和平台,它隐含了以下三层含义:

(1)MapReduce是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算集群。

(2)MapReduce是一个并行计算与运行软件框架(Software Framework)它提供了一个庞大但设计精良的并行计算软件框架,能自动完成计算任务的并行化处理,自动划分计算数据和计算任务,在集群节点上自动分配和执行任务以及收集计算结果,将数据分布存储、数据通信、容错处理等并行计算涉及到的很多系统底层的复杂细节交由系统负责处理,大大减少了软件开发人员的负担。

(3)MapReduce是一个并行程序设计模型与方法(Programming Model & Methodology)。它借助于函数式程序设计语言Lisp的设计思想,提供了一种简便的并行程序设计方法,用Map和Reduce两个函数编程实现基本的并行计算任务,提供了抽象的操作和并行编程接口,以简单方便地完成大规模数据的编程和计算处理 [百度百科] 。

1.3 MapReduce优缺点


1.2.1.优点

(1)MapReduce易于编程

它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。

(2)良好的扩展性

当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

(3)高容错性

MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。

(4)适合PB级以上海量数据的离线处理

可以实现上千台服务器集群并发工作,提供数据处理能力。

1.2.2.缺点

(1)不擅长实时计算

MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果,更多的适合离线或者T+1的任务。

(2)不擅长流式计算

流式计算的输入数据是动态的, 如Flink或者Spark Streaming,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。

(3)不擅长DAG(有向无环图)计算

多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

1.4 MapReduce框架结构


一个完整的mapreduce程序在分布式运行时有三类实例进程:

  • MR AppMaster负责管理MR作业的生命周期及状态协调, 一般指的是Yarn中AppMaster,针对MapReduce计算框架就是MR AppMaster,它使得MapReduce计算框架可以运行与YARN之上;
  • MapTask负责map阶段的整个数据处理流程;
  • ReduceTask负责reduce阶段的整个数据处理流程。


二、WordCount 案例


数据格式准备如下:

vim wordcount.txt     
hello I am ok   
hadoop hadoop
hello world
hello flume
hadoop hive
hive kafka
flume storm
hive oozie
hadoop hbase
hadoop flink
hive azkaban

将数据上传到HDFS

hdfs dfs -mkdir -p  /kangll/workcount
hdfs dfs   -put wordcount.txt   /kangll/workcount

代码示例

package com.kangna.mapreducer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/********************************
 * @Author: kangna
 * @Date: 2020/1/25 11:14
 * @Version: 1.0
 * @Desc:
 ********************************/
public class WordCountMain {

    public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        private Text word = new Text();
        private IntWritable one = new IntWritable(1);
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            // 取到一行个数据
            String line = value.toString();

            // 按照空格切分
            String[] words = line.split(" ");

            // 遍历数据
            for (String word : words) {
                this.word.set(word);
                context.write(this.word, this.one);
            }

        }
    }

    public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable > {

        private IntWritable total = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

            // 作累加
            int sum = 0;
            for (IntWritable value : values) {
                sum += value.get();
            }

            // 包装 结构并输出
            total.set(sum);
            context.write(key, total);
        }
    }


    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        // 1. 获取一个 Job 实例
        Job job = Job.getInstance(new Configuration());

        // 2. 设置  类的路径
        job.setJarByClass(WordCountMain.class);

        // 3. 设置 Mapper 和 Reducer
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4. 设置 Mapper 和  Reducer 的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 5. 设置输入输出数据
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 6. 提交Job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);

    }
}

打包在集群中运行。


三、MapReduce的运行机制详解



3.1 MapTask 工作机制

Map阶段流程大体如上图

简单概述:InputFile 通过 split 被逻辑切分为多个split文件,通过Record按行读取内容给 map(用户自己实现的)进行处理,数据被 map 处理结束之后交给 OutputCollector 收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候需要将缓冲区的数据以一个临时文件的方式存放到磁盘,当整个map task结束后再对磁盘中这个map task产生的所有临时文件做合并,生成最终的正式输出文件,然后等待reduce task来拉数据。

详细步骤:

  1. Split阶段读取数据组件 InputFormat (默认 TextInputFormat) 会通过 getSplits 方法对输入目录中文件进行逻辑切片规划得到 block, 有多少个 block就对应启动多少个 MapTask
  2. Read阶段:将输入文件切分为 block 之后, 由 RecordReader 对象 (默认是LineRecordReader) 进行读取, 以 \n 作为分隔符, 读取一行数据, 返回 <key,value>. Key 表示每行首字符偏移值, Value 表示这一行文本内容
  3. Map阶段读取 block 返回 <k ey,value>, 进入用户自己继承的 Mapper 类中,执行用户重写的 map 函数, RecordReader 读取一行这里调用一次
  4. Collection收集阶段 Mapper 逻辑结束之后, 将 Mapper 的每条结果通过 context.write 进行collect数据收集. 在 collect 中, 会先对其进行分区处理,默认使用 HashPartitioner

MapReduce 提供 Partitioner 接口, 它的作用就是根据 Key 或 Value 及 Reducer 的数量来决定当前的这对输出数据最终应该交由哪个 Reduce task 处理, 默认对 Key Hash 后再以 Reducer 数量取模. 默认的取模方式只是为了平均 Reducer 的处理能力, 如果用户自己对 Partitioner 有需求, 可以订制并设置到 Job 上

       5. 接下来, 会将数据写入内存, 内存中这片区域叫做环形缓冲区, 缓冲区的作用是批量收集 Mapper 结果, 减少磁盘 IO 的影响. 我们的 <Key,Value> 对以及 Partition 的结果都会被写入缓冲区. 当然, 写入之前,Key 与 Value 值都会被序列化成字节数组

环形缓冲区其实是一个数组, 数组中存放着 Key, Value 的序列化数据和 Key, Value 的元数据信息, 包括 Partition, Key 的起始位置, Value 的起始位置以及 Value 的长度. 环形结构是一个抽象概念。
缓冲区是有大小限制, 默认是 100MB. 当 Mapper 的输出结果很多时, 就可能会撑爆内存, 所以需要在一定条件下将缓冲区中的数据临时写入磁盘, 然后重新利用这块缓冲区. 这个从内存往磁盘写数据的过程被称为 Spill, 也称为溢写. 这个溢写是由单独线程来完成,整个缓冲区有个溢写的比例 spill.percent. 这个比例默认是 0.8, 也就是当缓冲区的数据已经达到阈值 buffer size * spill percent = 100MB * 0.8 = 80MB, 溢写线程启动, 锁定这 80MB 的内存, 执行溢写过程. Mapper 的输出结果还可以往剩下的 20MB 内存中写, 互不影响

        6. Spill阶段即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。当溢写线程启动后, 将数据写入本地磁盘之前,需要对这 80MB 空间内的 Key 做排序 (Sort). 排序是 MapReduce 模型默认的行为, 这里的排序也是对序列化的字节做的排序。

如果 Job 设置过 Combiner, 会将有相同 Key 的 <key, value> 对的 Value 合并在起来, 减少溢写到磁盘的数据量。 Combiner 会优化 MapReduce 的中间结果, Combiner 的输出是 Reducer 的输入, Combiner 绝不能改变最终的计算结果。 Combiner 只应该用于那种 Reduce 的输入 <key, value> 与输出 <key, value> 类型完全一致, 且不影响最终结果的场景. 比如累加, 最大值等。

        7. Merge阶段 : 每次溢写会在磁盘上生成一个临时文件 (写之前判断是否有 Combiner),如果 Mapper 的输出结果真的很大, 有多次这样的溢写发生, 磁盘上相应的就会有多个临时文件存在. 当整个数据处理结束之后开始对磁盘中的临时文件进行 Merge 合并, 因为最终的文件只有一个, 写入磁盘, 并且为这个文件提供了一个索引文件, 以记录每个reduce对应数据的偏移量

【mapTask的一些基础设置配置】

配置

默认值

解释

mapreduce.task.io.sort.mb

100

设置环型缓冲区的内存值大小

mapreduce.map.sort.spill.percent

0.8

设置溢写的比例

mapreduce.cluster.local.dir

${hadoop.tmp.dir}/mapred/local

溢写数据目录

mapreduce.task.io.sort.factor

10

设置一次合并多少个溢写文件

3.2 ReduceTask 工作机制


简单概述:Reduce 大致分为 copy、sort、reduce 三个阶段,重点在前两个阶段。copy 阶段包含一个 eventFetcher 来获取已完成的 map 列表,由 Fetcher 线程去 copy 数据,在此过程中会启动两个 merge 线程,分别为 inMemoryMerger 和 onDiskMerger,分别将内存中的数据 merge 到磁盘和将磁盘中的数据进行 merge。待数据 copy 完成之后,copy 阶段就完成了,开始进行 sort 阶段,sort 阶段主要是执行 finalMerge 操作,纯粹的 sort 阶段,完成之后就是 reduce 阶段,调用用户定义的 reduce 函数进行处理。

详细步骤

  1. Copy阶段拉取数据。Reduce进程启动一些数据copy线程(Fetcher),通过HTTP方式请求MapTask获取属于自己的文件。
  2. Merge阶段在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。Copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端的更为灵活。merge有三种形式:内存到内存;内存到磁盘;磁盘到磁盘。默认情况下第一种形式不启用。当内存中的数据量到达一定阈值,就启动内存到磁盘的merge。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的文件。
  3. Sort阶段:把分散的数据合并成一个大的数据后,还会再对合并后的数据排序。
  4. Reduce阶段:键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对,最后把这些输出的键值对写入到HDFS文件中。

3.3 Shuffle 过程


map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 shuffle。

shuffle: 洗牌、发牌 ——(核心机制:数据分区,排序,分组,规约,合并等过程)

shuffle 是 Mapreduce 的核心,它分布在 Mapreduce 的 map 阶段和 reduce 阶段。一般把从 Map 产生输出开始到 Reduce 取得数据作为输入之前的过程称作 shuffle。

  1. Collect阶段:将 MapTask 的结果输出到默认大小为 100M 的环形缓冲区,保存的是 key/value,Partition 分区信息等。
  2. Spill阶段当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了 combiner,还会将有相同分区号和 key 的数据进行排序。
  3. Merge阶段:把所有溢出的临时文件进行一次合并操作,以确保一个 MapTask 最终只产生一个中间数据文件。
  4. Copy阶段:ReduceTask 启动 Fetcher 线程到已经完成 MapTask 的节点上复制一份属于自己的数据,这些数据默认会保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。
  5. Merge阶段:在 ReduceTask 远程复制数据的同时,会在后台开启两个线程对内存到本地的数据文件进行合并操作。
  6. Sort阶段:在对数据进行合并的同时,会进行排序操作,由于 MapTask 阶段已经对数据进行了局部的排序,ReduceTask 只需保证 Copy 的数据的最终整体有效性即可。

Shuffle 中的缓冲区大小会影响到 mapreduce 程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快

缓冲区的大小可以通过参数调整, 参数:mapreduce.task.io.sort.mb 默认100M

 参考文档:

c​大数据计算引擎MapReduce框架详解 | 大数据技术分享

MapReduce的shuffle过程详解(分片、分区、合并、归并。。。)_mapreduce的shuffle流程_ASN_forever的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/137898.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构 | 栈的实现

数据结构 | 栈的实现 文章目录 数据结构 | 栈的实现栈的概念及结构栈的实现 需要实现的函数初始化栈入栈出栈获取栈顶元素获取栈中有效元素个数检测栈是否为空销毁栈Stack.c 栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素…

AI的尽头是解决屎山代码

众所周知&#xff0c;Copilot 被认为是比 ChatGPT 更深谙程序员心思的工具。在今天凌晨的 GitHub Universe 2023 大会上&#xff0c;GitHub 公布了 Copilot 的最新消息&#xff0c;这一神器旨在解放程序员的双手&#xff0c;AI 将彻底改变开发者的编程方式。 在本次盛会上&…

数据结构:并查集(概念,代码实现,并查操作优化)

目录 1.表示集合关系2.并查集的代码实现1.基本操作&#xff1a;查2.基本操作&#xff1a;并 3.并查集的优化1.并&#xff08;Union&#xff09;操作的优化2.Find操作的优化&#xff08;压缩路径) 1.表示集合关系 用互不相交的树&#xff0c;表示多个集合。 ①查&#xff1a;查找…

AI应用新时代的起点,亚马逊云科技加速大模型应用

大语言模型 何为大语言模型&#xff0c;可以一句话概括&#xff1a;深度学习是机器学习的分支&#xff0c;大语言模型是深度学习的分支。 机器学习是人工智能&#xff08;AI&#xff09;的一个分支领域&#xff0c;核心是让计算机系统从数据中学习以提高性能。与直接编程不同…

【linux进程控制(三)】进程程序替换--如何自己实现一个bash解释器?

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; 进程程序替换 1. 前言2. exec…

【仿真动画】双机器人协作完成一个任务(切割)

场景 动画 两个机器人协同工作完成一个任务需要解决以下几个关键问题&#xff1a; 通信&#xff1a;两个机器人需要能够相互通信&#xff0c;以共享信息&#xff0c;例如位置、姿态、状态等。规划&#xff1a;需要对两个机器人的运动轨迹进行规划&#xff0c;确保两个机器人不会…

RESTful API概述以及如何使用它构建 web 应用程序

REST&#xff08;Representational State Transfer&#xff09;是一种设计风格和架构原则&#xff0c;它是一种为 Web 应用程序提供简化和标准化的 API 的方式。RESTful API&#xff08;RESTful Web Services&#xff09;是符合 REST 架构风格的网络应用程序 API&#xff0c;它…

未来之路:大模型技术在自动驾驶的应用与影响

本文深入分析了大模型技术在自动驾驶领域的应用和影响&#xff0c;万字长文&#xff0c;慢慢观看~ 文中首先概述了大模型技术的发展历程&#xff0c;自动驾驶模型的迭代路径&#xff0c;以及大模型在自动驾驶行业中的作用。接着&#xff0c;详细介绍了大模型的基本定义、基础功…

关系查询处理和查询优化

关系数据库系统的查询处理 4 个阶段 查询分析查询检查【此时的完整性检查是初步的、静态的检查】查询优化【分为代数优化、物理优化】查询执行 关系数据库系统的查询优化 查询优化的优点不仅在于用户不必考虑如何最好地表达查询以获得较高地效率&#xff0c;而且在于系统可…

Springboot项目部署及多环境开发

一、项目部署 我们之前写的代码都是部署在本地的tomcat上&#xff0c;别人是无法访问我们写的程序的。在实际开发中&#xff0c;我们都要将开发完毕的项目部署到公司的服务器上。 我们的代码需要经过编译打包生成一个jar包&#xff0c;这个过程需要借助一个插件来实现。 创建sp…

2024最新基于物联网单片机毕业设计选题汇总(合集)

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

初始MySQL(四)(查询加强练习,多表查询)

目录 查询加强 where加强 order by加强 group by 分页查询 总结 多表查询(重点) 笛卡尔集及其过滤 自连接 子查询 子查询当作临时表 all/any 多列子查询 #先创建三张表 #第一张表 CREATE TABLE dept(deptno MEDIUMINT NOT NULL DEFAULT 0,dname VARCHAR(20) NOT …

2023-11-13 LeetCode每日一题(区域和检索 - 数组可修改)

2023-11-13每日一题 一、题目编号 307. 区域和检索 - 数组可修改二、题目链接 点击跳转到题目位置 三、题目描述 给你一个数组 nums &#xff0c;请你完成两类查询。 其中一类查询要求 更新 数组 nums 下标对应的值另一类查询要求返回数组 nums 中索引 left 和索引 right…

Oracle主备切换,ogg恢复方法(经典模式)

前言: 文章主要介绍Oracle数据库物理ADG主备在发生切换时(switchover,failover)&#xff0c;在主库、备库运行的ogg进程(经典模式)如何进行恢复。 测试恢复场景: 1 主备发生switchover切换&#xff0c;主库为ogg源端 2 主备发生switchover切换&#xff0c;备库为ogg源端 3 主备…

【Linux】Linux动态库和静态库

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;Linux &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 上一篇博客&#xff1a;【Linux】…

AIOT数字孪生智慧工地一体化管理平台源码

智慧工地app基于物联网和移动互联网技术&#xff0c;利用各类传感器及终端设备通过与云端服务器的实时数据交互&#xff0c;为施工现场的管理人员提供环境监测、劳务实名制管理、物料管理、巡检记录、设备管理等一系列优质高效的行业解决方案。 一、智能工地应用价值 智慧工地…

Java+Spring Cloud +UniApp +MySql智慧工地综合管理云平台源码

智慧工地围绕工程现场人、机、料、法、环及施工过程中质量、安全、进度、成本等各项数据满足工地多角色、多视角的有效监管,实现工程建设管理的降本增效. 智慧工地综合管理云平台源码&#xff0c;PC监管端、项目端&#xff1b;APP监管端、项目端、数据可视化大屏端源码&#xf…

springboot rocketmq 延时消息、延迟消息

rocketmq也有延迟消息&#xff0c;经典的应用场景&#xff1a;订单30分钟未支付&#xff0c;则取消的场景 其他博客提到从rocketmq5.0开始&#xff0c;支持自定义延迟时间&#xff0c;4.x只支持预定义延迟时间&#xff0c;安装rocketmq可参考RocketMq简介及安装、docker安装ro…

iOS OpenGL ES3.0入门实践

一、效果图 入门实践&#xff0c;做的东西比较简单&#xff0c;效果如下&#xff1a; 二、关于顶点坐标和纹理坐标 绘制图片需要设置顶点坐标和纹理坐标并加载像素数据&#xff0c;之所以要指定两组坐标是因为纹理和顶点使用不同的坐标系&#xff0c;就是告诉OpenGL&#xf…

9 个可以免费检索意外删除或丢失的文件的专业数据恢复软件

今天&#xff0c;我们将探索一些最佳数据恢复软件&#xff0c;它们可以帮助您从 Windows PC 或存储设备中检索意外删除或丢失的文件&#xff01; 丢失数据或意外删除数据是一种令人不安的经历。值得庆幸的是&#xff0c;存在有效的解决方案来解决这种情况。今天&#xff0c;我…
最新文章