26- OCR 基于PP-OCRv3的液晶屏读数识别

要点:

  • 液晶屏识别示例
  • github 地址


1. 简介

本项目基于PaddleOCR开源套件,以PP-OCRv3检测和识别模型为基础,针对液晶屏读数识别场景进行优化。主要是针对各种仪表进行识别:

2 安装环境

安装Git:Git 详细安装教程

# 首先git官方的PaddleOCR项目,安装需要的依赖
# 第一次运行打开该注释
# git clone https://gitee.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR
pip install -r requirements.txt

3 . 文字检测,PP-OCRv3检测算法介绍

PP-OCRv3检测模型是对PP-OCRv2中的CML(Collaborative Mutual Learning) 协同互学习文本检测蒸馏策略进行了升级。如下图所示,CML的核心思想结合了①传统的Teacher指导Student的标准蒸馏与 ②Students网络之间的DML互学习,可以让Students网络互学习的同时,Teacher网络予以指导。PP-OCRv3分别针对教师模型和学生模型进行进一步效果优化。其中,在对教师模型优化时,提出了大感受野的PAN结构LK-PAN和引入了DML(Deep Mutual Learning)蒸馏策略;在对学生模型优化时,提出了残差注意力机制的FPN结构RSE-FPN。

3.1 数据准备

计量设备屏幕字符检测数据集数据来源于实际项目中各种计量设备的数显屏,以及在网上搜集的一些其他数显屏,包含训练集755张,测试集355张。

# 在PaddleOCR下创建新的文件夹train_data
mkdir train_data
# 下载数据集并解压到指定路径下
unzip icdar2015.zip  -d train_data
# 随机查看文字检测数据集图片
from PIL import Image  
import matplotlib.pyplot as plt
import numpy as np
import os


train = './train_data/icdar2015/text_localization/test'
# 从指定目录中选取一张图片
def get_one_image(train):
    plt.figure()
    files = os.listdir(train)
    n = len(files)
    ind = np.random.randint(0,n)
    img_dir = os.path.join(train,files[ind])  
    image = Image.open(img_dir)  
    plt.imshow(image)
    plt.show()
    image = image.resize([208, 208])  

get_one_image(train)  

3.2 模型训练

3.2.1 预训练模型直接评估

下载我们需要的PP-OCRv3检测预训练模型,更多选择请自行选择其他的文字检测模型

#使用该指令下载需要的预训练模型
wget -P ./pretrained_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
# 解压预训练模型文件
tar -xf ./pretrained_models/ch_PP-OCRv3_det_distill_train.tar -C pretrained_models

在训练之前,我们可以直接使用下面命令来评估预训练模型的效果:

# 评估预训练模型
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model="./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy"

 不要乱改参数,不然运行不了,结果如下:

3.2.2 预训练模型直接finetune

修改配置文件

我们使用configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方:

epoch:100
save_epoch_step:10
eval_batch_step:[0, 50]
save_model_dir: ./output/ch_PP-OCR_v3_det/
pretrained_model: ./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy
learning_rate: 0.00025
num_workers: 0 # 如果单卡训练,建议将Train和Eval的loader部分的num_workers设置为0,否则会出现`/dev/shm insufficient`的报错

开始训练

使用我们上面修改的配置文件configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml,训练命令如下:

# 开始训练模型
python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy

评估训练好的模型:

# 评估训练好的模型
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det/best_accuracy"

3.2.3 基于预训练模型Finetune_student模型

我们使用configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方:

epoch:100
save_epoch_step:10
eval_batch_step:[0, 50]
save_model_dir: ./output/ch_PP-OCR_v3_det_student/
pretrained_model: ./pretrained_models/ch_PP-OCRv3_det_distill_train/student
learning_rate: 0.00025
num_workers: 0 # 如果单卡训练,建议将Train和Eval的loader部分的num_workers设置为0,否则会出现`/dev/shm insufficient`的报错

训练命令如下:

python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/student

评估训练好的模型:

# 评估训练好的模型
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det_student/best_accuracy"

3.2.4 基于预训练模型Finetune_teacher模型

首先需要从提供的预训练模型best_accuracy.pdparams中提取teacher参数,组合成适合dml训练的初始化模型,提取代码如下:

cd ./pretrained_models/
# transform teacher params in best_accuracy.pdparams into teacher_dml.paramers
import paddle

# load pretrained model
all_params = paddle.load("ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams")
# print(all_params.keys())

# keep teacher params
t_params = {key[len("Teacher."):]: all_params[key] for key in all_params if "Teacher." in key}

# print(t_params.keys())

s_params = {"Student." + key: t_params[key] for key in t_params}
s2_params = {"Student2." + key: t_params[key] for key in t_params}
s_params = {**s_params, **s2_params}
# print(s_params.keys())

paddle.save(s_params, "ch_PP-OCRv3_det_distill_train/teacher_dml.pdparams")

我们使用configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方:

epoch:100
save_epoch_step:10
eval_batch_step:[0, 50]
save_model_dir: ./output/ch_PP-OCR_v3_det_teacher/
pretrained_model: ./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_dml
learning_rate: 0.00025
num_workers: 0 # 如果单卡训练,建议将Train和Eval的loader部分的num_workers设置为0,否则会出现`/dev/shm insufficient`的报错

训练命令如下:

python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_dml

评估训练好的模型:

# 评估训练好的模型
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det_teacher/best_accuracy"

 3.2.5 采用CML蒸馏进一步提升student模型精度

需要从4.3.3和4.3.4训练得到的best_accuracy.pdparams中提取各自代表student和teacher的参数,组合成适合cml训练的初始化模型,提取代码如下:

# transform teacher params and student parameters into cml model
import paddle

all_params = paddle.load("./pretrained_models/ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams")
# print(all_params.keys())

t_params = paddle.load("./output/ch_PP-OCR_v3_det_teacher/best_accuracy.pdparams")
# print(t_params.keys())

s_params = paddle.load("./output/ch_PP-OCR_v3_det_student/best_accuracy.pdparams")
# print(s_params.keys())

for key in all_params:
    # teacher is OK
    if "Teacher." in key:
        new_key = key.replace("Teacher", "Student")
        #print("{} >> {}\n".format(key, new_key))
        assert all_params[key].shape == t_params[new_key].shape
        all_params[key] = t_params[new_key]

    if "Student." in key:
        new_key = key.replace("Student.", "")
        #print("{} >> {}\n".format(key, new_key))
        assert all_params[key].shape == s_params[new_key].shape
        all_params[key] = s_params[new_key]

    if "Student2." in key:
        new_key = key.replace("Student2.", "")
        print("{} >> {}\n".format(key, new_key))
        assert all_params[key].shape == s_params[new_key].shape
        all_params[key] = s_params[new_key]

paddle.save(all_params, "./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_cml_student.pdparams")

训练命令如下:

python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model=./pretrained_models/ch_PP-OCRv3_det_distill_train/teacher_cml_student Global.save_model_dir=./output/ch_PP-OCR_v3_det_finetune/

评估训练好的模型:

# 评估训练好的模型
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_det_finetune/best_accuracy"

3.2.6 模型导出推理

训练完成后,可以将训练模型转换成inference模型。inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。

3.3.6.1 模型导出

导出命令如下:

# 转化为推理模型
python tools/export_model.py \
-c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
-o Global.pretrained_model=./output/ch_PP-OCR_v3_det_finetune/best_accuracy \
-o Global.save_inference_dir="./inference/det_ppocrv3"

3.3.6.2 模型推理

导出模型后,可以使用如下命令进行推理预测:

# 推理预测
python tools/infer/predict_det.py --image_dir="train_data/icdar2015/text_localization/test/1.jpg" --det_model_dir="./inference/det_ppocrv3/Student"

4 文字识别

文本识别的任务是识别出图像中的文字内容,一般输入来自于文本检测得到的文本框截取出的图像文字区域。文本识别一般可以根据待识别文本形状分为规则文本识别和不规则文本识别两大类。规则文本主要指印刷字体、扫描文本等,文本大致处在水平线位置;不规则文本往往不在水平位置,存在弯曲、遮挡、模糊等问题。不规则文本场景具有很大的挑战性,也是目前文本识别领域的主要研究方向。本项目基于PP-OCRv3算法进行优化。

4.1 PP-OCRv3识别算法介绍

PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。如下图所示,PP-OCRv3采用了6个优化策略。

优化策略汇总如下:

  • SVTR_LCNet:轻量级文本识别网络
  • GTC:Attention指导CTC训练策略
  • TextConAug:挖掘文字上下文信息的数据增广策略
  • TextRotNet:自监督的预训练模型
  • UDML:联合互学习策略
  • UIM:无标注数据挖掘方案

4.2 数据准备

计量设备屏幕字符识别数据集数据来源于实际项目中各种计量设备的数显屏,以及在网上搜集的一些其他数显屏,包含训练集19912张,测试集4099张。

# 解压下载的数据集到指定路径下
unzip ic15_data.zip -d train_data
# 随机查看文字检测数据集图片
from PIL import Image  
import matplotlib.pyplot as plt
import numpy as np
import os

train = './train_data/ic15_data/train'
# 从指定目录中选取一张图片
def get_one_image(train):
    plt.figure()
    files = os.listdir(train)
    n = len(files)
    ind = np.random.randint(0,n)
    img_dir = os.path.join(train,files[ind])  
    image = Image.open(img_dir)  
    plt.imshow(image)
    plt.show()
    image = image.resize([208, 208])  

get_one_image(train)

4.3 模型训练

下载预训练模型

下载我们需要的PP-OCRv3识别预训练模型,更多选择请自行选择其他的文字识别模型

# 使用该指令下载需要的预训练模型
wget -P ./pretrained_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar
# 解压预训练模型文件
tar -xf ./pretrained_models/ch_PP-OCRv3_rec_train.tar -C pretrained_models

修改配置文件

我们使用configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方:

  epoch_num: 100 # 训练epoch数
  save_model_dir: ./output/ch_PP-OCR_v3_rec
  save_epoch_step: 10
  eval_batch_step: [0, 100] # 评估间隔,每隔100step评估一次
  cal_metric_during_train: true
  pretrained_model: ./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy  # 预训练模型路径
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  use_space_char: true  # 使用空格

  lr:
    name: Cosine # 修改学习率衰减策略为Cosine
    learning_rate: 0.0002 # 修改fine-tune的学习率
    warmup_epoch: 2 # 修改warmup轮数

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/ic15_data/ # 训练集图片路径
    ext_op_transform_idx: 1
    label_file_list:
    - ./train_data/ic15_data/rec_gt_train.txt # 训练集标签
    ratio_list:
    - 1.0
  loader:
    shuffle: true
    batch_size_per_card: 64
    drop_last: true
    num_workers: 4
Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/ic15_data/ # 测试集图片路径
    label_file_list:
    - ./train_data/ic15_data/rec_gt_test.txt # 测试集标签
    ratio_list:
    - 1.0
  loader:
    shuffle: false
    drop_last: false
    batch_size_per_card: 64
    num_workers: 4

在训练之前,我们可以直接使用下面命令来评估预训练模型的效果:

# 评估预训练模型
python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy"

开始训练

我们使用上面修改好的配置文件configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml,预训练模型,数据集路径,学习率,训练轮数等都已经设置完毕后,可以使用下面命令开始训练。

# 开始训练识别模型
python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml

 训练完成后,可以对训练模型中最好的进行测试,评估命令如下:

# 评估finetune效果
python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.checkpoints="./output/ch_PP-OCR_v3_rec/best_accuracy"

4.4 模型导出推理

训练完成后,可以将训练模型转换成inference模型。inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。

模型导出

导出命令如下:

# 转化为推理模型
python tools/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_rec/best_accuracy" Global.save_inference_dir="./inference/rec_ppocrv3/"

模型推理

导出模型后,可以使用如下命令进行推理预测

# 推理预测
python tools/infer/predict_rec.py --image_dir="train_data/ic15_data/test/1_crop_0.jpg" --rec_model_dir="./inference/rec_ppocrv3/Student"

5 系统串联

我们将上面训练好的检测和识别模型进行系统串联测试,命令如下:

#串联测试
python3 tools/infer/predict_system.py --image_dir="./train_data/icdar2015/text_localization/test/142.jpg" --det_model_dir="./inference/det_ppocrv3/Student"  --rec_model_dir="./inference/rec_ppocrv3/Student"

测试结果保存在./inference_results/目录下,可以用下面代码进行可视化

%cd /home/aistudio/PaddleOCR
# 显示结果
import matplotlib.pyplot as plt
from PIL import Image
img_path= "./inference_results/142.jpg"
img = Image.open(img_path)
plt.figure("test_img", figsize=(30,30))
plt.imshow(img)
plt.show()

5.1 后处理

如果需要获取key-value信息,可以基于启发式的规则,将识别结果与关键字库进行匹配;如果匹配上了,则取该字段为key, 后面一个字段为value。

def postprocess(rec_res):
    keys = ["型号", "厂家", "版本号", "检定校准分类", "计量器具编号", "烟尘流量",
            "累积体积", "烟气温度", "动压", "静压", "时间", "试验台编号", "预测流速",
            "全压", "烟温", "流速", "工况流量", "标杆流量", "烟尘直读嘴", "烟尘采样嘴",
            "大气压", "计前温度", "计前压力", "干球温度", "湿球温度", "流量", "含湿量"]
    key_value = []
    if len(rec_res) > 1:
        for i in range(len(rec_res) - 1):
            rec_str, _ = rec_res[i]
            for key in keys:
                if rec_str in key:
                    key_value.append([rec_str, rec_res[i + 1][0]])
                    break
    return key_value
key_value = postprocess(filter_rec_res)

6 PaddleServing部署

首先需要安装PaddleServing部署相关的环境

python -m pip install paddle-serving-server-gpu
python -m pip install paddle_serving_client
python -m pip install paddle-serving-app

6.1 转化检测模型

cd deploy/pdserving/
python -m paddle_serving_client.convert --dirname ../../inference/det_ppocrv3/Student/  \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_v3_serving/ \
                                         --serving_client ./ppocr_det_v3_client/

6.2 转化识别模型

python -m paddle_serving_client.convert --dirname ../../inference/rec_ppocrv3/Student \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_v3_serving/ \
                                         --serving_client ./ppocr_rec_v3_client/

6.3 启动服务

首先可以将后处理代码加入到web_service.py中,具体修改如下:

# 代码153行后面增加下面代码
def _postprocess(rec_res):
    keys = ["型号", "厂家", "版本号", "检定校准分类", "计量器具编号", "烟尘流量",
            "累积体积", "烟气温度", "动压", "静压", "时间", "试验台编号", "预测流速",
            "全压", "烟温", "流速", "工况流量", "标杆流量", "烟尘直读嘴", "烟尘采样嘴",
            "大气压", "计前温度", "计前压力", "干球温度", "湿球温度", "流量", "含湿量"]
    key_value = []
    if len(rec_res) > 1:
        for i in range(len(rec_res) - 1):
            rec_str, _ = rec_res[i]
            for key in keys:
                if rec_str in key:
                    key_value.append([rec_str, rec_res[i + 1][0]])
                    break
    return key_value
key_value = _postprocess(rec_list)
res = {"result": str(key_value)}
# res = {"result": str(result_list)}

启动服务端

python web_service.py 2>&1 >log.txt

6.4 发送请求

然后再开启一个新的终端,运行下面的客户端代码

python pipeline_http_client.py --image_dir ../../train_data/icdar2015/text_localization/test/142.jpg

可以获取到最终的key-value结果:

大气压, 100.07kPa
干球温度, 0000℃
计前温度, 0000℃
湿球温度, 0000℃
计前压力, -0000kPa
流量, 00.0L/min
静压, 00000kPa
含湿量, 00.0 %

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/15357.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Git基础

文章目录 1. Git基础1.1 版本管理1.1.1 什么是版本管理1.1.2 人为维护文档版本的问题 1.2 Git 是什么1.3 Git 安装1.4 Git基本工作流程1.5 Git 的使用1.5.1 Git 使用前配置1.5.2 提交步骤1.5.3 撤销 2. Git进阶2.1 分支2.1.1 分支细分2.1.2 分支命令 2.2 暂时保存更改 1. Git基…

鸿蒙Hi3861学习三-第一个实例程序Hello_world

一、简介 前两章介绍了环境搭建、烧录和编译。这一节,来介绍实现第一个经典代码“hello world”。 先介绍小熊派的目录结构,该目录结构延续了OpenHarmony官方目录结构。 二、实操 1.搭建代码架构 1).新建项目文件夹hello_world cd bearpi-hm_nano/appli…

【VM服务管家】VM4.0平台SDK_2.3 控件嵌入类

目录 2.3.1 渲染结果:通过绑定流程或模块获取渲染结果的方法2.3.2 渲染控件:渲染控件加载本地图像的方法2.3.3 渲染控件:渲染控件上自定义图形的方法2.3.4 参数控件:参数配置控件绑定模块的方法2.3.5 控件颜色:控件颜色…

Java新提案,最终还是靠近C#了

Java是一门非常优秀的编程语言,特别是生态繁荣,成熟的轮子很多,各种解决方案都有,要开发一个项目,只需把轮子组装,并根据自己的项目,进行自定义修改,可以极大地提升开发效率。 曾经…

【算法】【算法杂谈】判断点是否在三角形内部(面积法和向量法)

目录 前言问题介绍解决方案代码编写java语言版本c语言版本c语言版本 思考感悟写在最后 前言 当前所有算法都使用测试用例运行过,但是不保证100%的测试用例,如果存在问题务必联系批评指正~ 在此感谢左大神让我对算法有了新的感悟认识! 问题介…

react-antd-procomponents组件库 ProTable表格实现跨页多选。

table表格多选时所需要的api 1.onSelect - 单行选择(用户手动选择/取消选择某行的回调) 2.onSelectMultiple - 多行选择(用户使用键盘 shift 选择多行的回调) 3.onSelectAll - 全选全不选(用户手动选择/取消选择所有行的回调) 4.onChange - 每次选择行都…

Page管理机制

Page页分类 Buffer Pool 的底层采用链表数据结构管理Page。在InnoDB访问表记录和索引时会在Page页中缓存,以后使用可以减少磁盘IO操作,提升效率 Page根据状态可以分为三种类型: - free page : 空闲page,未被使用 - …

耐腐蚀高速电动针阀在半导体硅片清洗机化学药液流量控制中的应用

摘要:化学药液流量的精密控制是半导体湿法清洗工艺中的一项关键技术,流量控制要求所用调节针阀一是开度电动可调、二是具有不同的口径型号、三是高的响应速度,四是具有很好的耐腐蚀性,这些都是目前提升半导体清洗设备性能需要解决…

2023/4/25总结

刷题&#xff1a; 第一周任务 - Virtual Judge (vjudge.net) 1.这一题的思路就是先排除前面和后面相等的&#xff0c;然后找到不等的情况&#xff0c;不等情况的下标开始前后都走&#xff0c;看看是不是和b数组构成了一个升序数组即可。 #include<stdio.h> #define Ma…

【数据结构】链表详解

本片要分享的内容是链表&#xff0c;为方便阅读以下为本片目录 目录 1.顺序表的问题及思考 1.链表的遍历 2.头部插入 2.1开辟空间函数分装 3.尾部插入 纠正 4.尾部删除 5.头部删除 6.数据查找 7.任意位置插入 1.顺序表的问题及思考 上一篇中讲解了顺序表中增删查…

从源码全面解析LinkedBlockingQueue的来龙去脉

一、引言 并发编程在互联网技术使用如此广泛&#xff0c;几乎所有的后端技术面试官都要在并发编程的使用和原理方面对小伙伴们进行 360 的刁难。 二、使用 对于阻塞队列&#xff0c;想必大家应该都不陌生&#xff0c;我们这里简单的介绍一下&#xff0c;对于 Java 里面的阻塞…

Python | 基于LendingClub数据的分类预测研究Part01——问题重述+特征选择+算法对比

欢迎交流学习~~ 专栏&#xff1a; 机器学习&深度学习 本文利用Python对数据集进行数据分析&#xff0c;并用多种机器学习算法进行分类预测。 具体文章和数据集可以见我所发布的资源&#xff1a;发布的资源 Python | 基于LendingClub数据的分类预测研究Part01——问题重述特…

在.NET Core中正确使用HttpClient的方式

HttpClient 是 .NET Framework、.NET Core 或 .NET 5以上版本中的一个类&#xff0c;用于向 Web API 发送 HTTP 请求并接收响应。它提供了一些简单易用的方法&#xff0c;如 GET、POST、PUT 和 DELETE&#xff0c;可以很容易地构造和发送 HTTP 请求&#xff0c;并处理响应数据。…

【Excel统计分析插件】上海道宁为您提供统计分析、数据可视化和建模软件——Analyse-it

Analyse-it是Microsoft Excel中的 统计分析插件 它为Microsoft Excel带来了 易于使用的统计软件 Analyse-it在软件中 引入了一些新的创新统计分析 Analyse-it与 许多Excel加载项开发人员不同 使用完善的软件开发和QA实践 包括单元/集成/系统测试 敏捷开发、代码审查 …

虹科案例|虹科Micronor光纤传感器,实现核磁共振新应用!

PART 1 背景介绍 光纤传感器已成为推动MRI最新功能套件升级和新MRI设备设计背后的关键技术。将患者的某些活动与MRI成像系统同步是越来越受重视的需求。磁场强度随着每一代的发展而增大&#xff0c;因此&#xff0c;组件的电磁透明度在每一代和新应用中变得更加重要。 光学传…

《Netty》从零开始学netty源码(四十六)之PooledByteBuf

PooledByteBuf Netty中一大块内存块PoolChunk默认大小为4MB&#xff0c;为了尽可能充分利用内存会将它切成很多块PooledByteBuf&#xff0c;PooledByteBuf的类关系图如下&#xff1a; PooledUnsafeDirectByteBuf与PooledUnsafeHeapByteBuf直接暴露对象的底层地址。 PooledByt…

【英语】100个句子记完7000个托福单词

其实主要的7000词其实是在主题归纳里面&#xff0c;不过过一遍100个句子也挺好的&#xff0c;反正也不多。 文章目录 Sentence 01Sentence 02Sentence 03Sentence 04Sentence 05Sentence 06Sentence 07Sentence 08Sentence 09Sentence 10Sentence 11Sentence 12Sentence 13Sent…

数据分析中常见标准的参考文献

做数据分析过程中&#xff0c;有些分析法方法的标准随便一搜就能找到&#xff0c;不管是口口相传还是默认&#xff0c;大家都按那样的标准做了。日常分析不细究出处还可以&#xff0c;但是正式的学术论文你需要为你写下的每一句话负责&#xff0c;每一个判断标准都应该有参考文…

Docker | 解决docker 容器中csv文件乱码的情况

问题描述&#xff1a;在Ubuntu docker容器中&#xff0c;打开.csv文件时显示乱码 问题如图 错误分析&#xff1a; 用locale查看所用容器支持的字符集 从输出可以看到&#xff0c;系统使用的是POSIX字符集&#xff0c;POSIX字符集是不支持中韩文的&#xff0c;而UTF-8是支持中…

刷题4.28

1、 开闭原则软件实体&#xff08;模块&#xff0c;类&#xff0c;方法等&#xff09;应该对扩展开放&#xff0c;对修改关闭&#xff0c;即在设计一个软件系统模块&#xff08;类&#xff0c;方法&#xff09;的时候&#xff0c;应该可以在不修改原有的模块&#xff08;修改关…