【深度学习实验】网络优化与正则化(六):逐层归一化方法——批量归一化、层归一化、权重归一化、局部响应归一化

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、优化算法
    • 0. 导入必要的库
    • 1. 随机梯度下降SGD算法
      • a. PyTorch中的SGD优化器
      • b. 使用SGD优化器的前馈神经网络
    • 2.随机梯度下降的改进方法
      • a. 学习率调整
      • b. 梯度估计修正
    • 3. 梯度估计修正:动量法Momentum
    • 4. 自适应学习率
    • 5. Adam算法
  • 四、参数初始化
  • 五、数据预处理
  • 六、逐层归一化
    • 1. 批量归一化
      • a. 理论基础
      • b. 代码实现
      • c. 测试
    • 2. 层归一化
      • a. 理论基础
      • b. 代码实现
      • c. 测试
    • 3. 权重归一化
    • 4. 局部响应归一化
    • 5. 代码整合

一、实验介绍

  深度神经网络在机器学习中应用时面临两类主要问题:优化问题和泛化问题。

  • 优化问题:深度神经网络的优化具有挑战性。

    • 神经网络的损失函数通常是非凸函数,因此找到全局最优解往往困难。
    • 深度神经网络的参数通常非常多,而训练数据也很大,因此使用计算代价较高的二阶优化方法不太可行,而一阶优化方法的训练效率通常较低。
    • 深度神经网络存在梯度消失梯度爆炸问题,导致基于梯度的优化方法经常失效。
  • 泛化问题:由于深度神经网络的复杂度较高且具有强大的拟合能力,很容易在训练集上产生过拟合现象。因此,在训练深度神经网络时需要采用一定的正则化方法来提高网络的泛化能力。

  目前,研究人员通过大量实践总结了一些经验方法,以在神经网络的表示能力、复杂度、学习效率和泛化能力之间取得良好的平衡,从而得到良好的网络模型。本系列文章将从网络优化和网络正则化两个方面来介绍如下方法:

  • 在网络优化方面,常用的方法包括优化算法的选择参数初始化方法数据预处理方法逐层归一化方法超参数优化方法
  • 在网络正则化方面,一些提高网络泛化能力的方法包括ℓ1和ℓ2正则化权重衰减提前停止丢弃法数据增强标签平滑等。

  本文将介绍神经网络优化的逐层归一化方法,包括批量归一化、层归一化、权重归一化(略)、局部响应归一化(略)等

二、实验环境

  本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、优化算法

  神经网络的参数学习是一个非凸优化问题.当使用梯度下降法来进行优化网络参数时,参数初始值的选取十分关键,关系到网络的优化效率和泛化能力.参数初始化的方式通常有以下三种:

0. 导入必要的库

from torch import nn

1. 随机梯度下降SGD算法

  随机梯度下降(Stochastic Gradient Descent,SGD)是一种常用的优化算法,用于训练深度神经网络。在每次迭代中,SGD通过随机均匀采样一个数据样本的索引,并计算该样本的梯度来更新网络参数。具体而言,SGD的更新步骤如下:

  1. 从训练数据中随机选择一个样本的索引。
  2. 使用选择的样本计算损失函数对于网络参数的梯度。
  3. 根据计算得到的梯度更新网络参数。
  4. 重复以上步骤,直到达到停止条件(如达到固定的迭代次数或损失函数收敛)。

a. PyTorch中的SGD优化器

   Pytorch官方教程

optimizer = torch.optim.SGD(model.parameters(), lr=0.2)

b. 使用SGD优化器的前馈神经网络

   【深度学习实验】前馈神经网络(final):自定义鸢尾花分类前馈神经网络模型并进行训练及评价

2.随机梯度下降的改进方法

  传统的SGD在某些情况下可能存在一些问题,例如学习率选择困难和梯度的不稳定性。为了改进这些问题,提出了一些随机梯度下降的改进方法,其中包括学习率的调整和梯度的优化。

a. 学习率调整

在这里插入图片描述

  • 学习率衰减(Learning Rate Decay):随着训练的进行,逐渐降低学习率。常见的学习率衰减方法有固定衰减、按照指数衰减、按照时间表衰减等。
  • Adagrad:自适应地调整学习率。Adagrad根据参数在训练过程中的历史梯度进行调整,对于稀疏梯度较大的参数,降低学习率;对于稀疏梯度较小的参数,增加学习率。这样可以在不同参数上采用不同的学习率,提高收敛速度。
  • Adadelta:与Adagrad类似,但进一步解决了Adagrad学习率递减过快的问题。Adadelta不仅考虑了历史梯度,还引入了一个累积的平方梯度的衰减平均,以动态调整学习率。
  • RMSprop:也是一种自适应学习率的方法,通过使用梯度的指数加权移动平均来调整学习率。RMSprop结合了Adagrad的思想,但使用了衰减平均来减缓学习率的累积效果,从而更加稳定。

b. 梯度估计修正

  • Momentum:使用梯度的“加权移动平均”作为参数的更新方向。Momentum方法引入了一个动量项,用于加速梯度下降的过程。通过积累之前的梯度信息,可以在更新参数时保持一定的惯性,有助于跳出局部最优解、加快收敛速度。
  • Nesterov accelerated gradient:Nesterov加速梯度(NAG)是Momentum的一种变体。与Momentum不同的是,NAG会先根据当前的梯度估计出一个未来位置,然后在该位置计算梯度。这样可以更准确地估计当前位置的梯度,并且在参数更新时更加稳定。
  • 梯度截断(Gradient Clipping):为了应对梯度爆炸或梯度消失的问题,梯度截断的方法被提出。梯度截断通过限制梯度的范围,将梯度控制在一个合理的范围内。常见的梯度截断方法有阈值截断和梯度缩放。

3. 梯度估计修正:动量法Momentum

【深度学习实验】网络优化与正则化(一):优化算法:使用动量优化的随机梯度下降算法(Stochastic Gradient Descent with Momentum)

4. 自适应学习率

【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop

5. Adam算法

  Adam算法(Adaptive Moment Estimation Algorithm)[Kingma et al., 2015]可以看作动量法和 RMSprop 算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率
【深度学习实验】网络优化与正则化(三):随机梯度下降的改进——Adam算法详解(Adam≈梯度方向优化Momentum+自适应学习率RMSprop)~入选综合热榜
在这里插入图片描述

四、参数初始化

【深度学习实验】网络优化与正则化(四):参数初始化及其Pytorch实现——基于固定方差的初始化(高斯、均匀分布),基于方差缩放的初始化(Xavier、He),正交初始化

五、数据预处理

【深度学习实验】网络优化与正则化(五):数据预处理详解——标准化、归一化、白化、去除异常值、处理缺失值~入选综合热榜
在这里插入图片描述

六、逐层归一化

  逐层归一化(Layer-wise Normalization)是将传统机器学习中的数据归一化方法应用到深度神经网络中,对神经网络中隐藏层的输入进行归一化,从而使得网络更容易训练,进而获得更好的性能和训练效果。它具有:

  • 更好的尺度不变性
    • 逐层归一化可以使输入数据的尺度保持一致,从而提高模型的鲁棒性和泛化能力。通过将每一层的输入数据归一化到相似的尺度,可以减轻不同层之间数据分布差异带来的问题。
    • 内部协变量偏移:在深度神经网络中,每层的输入分布会随着网络参数的更新而发生变化,这被称为内部协变量偏移。逐层归一化可以通过标准化每一层的输入,使得每层的激活函数的输入分布更加稳定,有助于网络的训练和收敛。
  • 更平滑的优化地形
    • 逐层归一化可以使得损失函数的优化地形更加平滑,从而加速模型的训练过程。通过减少梯度的变化范围,逐层归一化可以提高梯度下降算法的效率和稳定性。

1. 批量归一化

a. 理论基础

  • 批量归一化(Batch Normalization,BN):
    • 对神经网络中任意的中间层的单个神经元通过一个Batch数据进行标准化。
    • BN通常应用于卷积神经网络(CNN)和全连接神经网络(FCN)中。
  • 优点:
    • 提高优化效率:通过标准化每一层的输入数据,批量归一化可以缓解梯度消失和梯度爆炸问题,有助于加速优化算法的收敛过程。它可以使每一层的激活函数的输入保持在一个合适的范围内,提高了网络的稳定性和训练效率。、
    • 隐式的正则化方法:批量归一化在每个小批量样本上计算均值和方差,并将其用于标准化数据。这种标准化过程可以看作是一种正则化方法,有助于减少模型的过拟合风险。它在某种程度上充当了正则化的效果,使得模型在一定程度上具有更好的泛化能力。
  • 缺点:
    • 小批量样本的数量不能太小:批量归一化的效果受到小批量样本数量的影响。如果小批量样本数量太小,计算的均值和方差可能不准确,导致归一化效果不佳。通常建议使用较大的批量大小以获得更好的结果。
    • 无法应用到循环神经网络(RNN):批量归一化的计算是基于每个小批量样本的统计信息,而在循环神经网络中,由于神经元状态随时间变化,无法同时处理所有时间步的样本。因此,常规的批量归一化方法无法直接应用于循环神经网络。针对RNN,可以使用层归一化(Layer Normalization)来实现类似的效果。
      在这里插入图片描述

b. 代码实现

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
    if not torch.is_grad_enabled():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
            # 这里我们需要保持X的形状以便后面可以做广播运算
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
        # 训练模式下,用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 缩放和移位
    return Y, moving_mean.data, moving_var.data


class BatchNorm(nn.Module):
    # num_features:完全连接层的输出数量或卷积层的输出通道数。
    # num_dims:2表示全连接层,4表示卷积层
    def __init__(self, num_features, num_dims):
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 非模型参数的变量初始化为0和1
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.ones(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var 复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

c. 测试

batch_size = 20
train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
train_iter = DataLoader(train_data, batch_size=batch_size)

num_classes = 10
# 定义模型
net = nn.Sequential(
    nn.Conv2d(3, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(400, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
    nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
    nn.Linear(84, 10))
# 定义损失函数
loss_fn = F.cross_entropy
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)

runner = Runner(net, optimizer, loss_fn, metric=None)
runner.train(train_iter, num_epochs=10, save_path='BatchNorm')

# 第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta
print(net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,)))

在这里插入图片描述

2. 层归一化

a. 理论基础

  • 层归一化(Layer Normalization):
    • 对一个中间层的所有神经元进行归一化。
    • 与批量归一化不同,层归一化是在每一层的特征维度上进行归一化,而不是在批次维度上。这使得层归一化更适用于递归神经网络(RNN)等具有变长输入的模型。

在这里插入图片描述

在这里插入图片描述

b. 代码实现

class LayerNorm(nn.Module):
    def __init__(self, eps=1e-7, gamma=1.0, beta=0.0):
        super().__init__()
        self.gamma = torch.tensor(gamma)
        self.beta = torch.tensor(beta)
        self.eps = eps

    def forward(self, x):
        # x为规范化层的输入,请注意x的维度
        mean = x.mean(dim=0)
        var = x.var(dim=0)

        output = (x - mean) / torch.sqrt(var + self.eps)
        output = output * self.gamma + self.beta

        return output

c. 测试

batch_size = 20
train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
train_iter = DataLoader(train_data, batch_size=batch_size)


num_classes = 10
# 定义模型
net = nn.Sequential(
    nn.Conv2d(3, 6, kernel_size=5),
    LayerNorm(gamma=1.0, beta=0.0),  # 使用自定义的LayerNorm类,并设置gamma和beta的初始值
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), LayerNorm(gamma=1.0, beta=0.0), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(400, 120),LayerNorm(), nn.Sigmoid(),
    nn.Linear(120, 84),LayerNorm(),nn.Sigmoid(),
    nn.Linear(84, 10)
)


# 定义损失函数
loss_fn = F.cross_entropy
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)

runner = Runner(net, optimizer, loss_fn, metric=None)
runner.train(train_iter, num_epochs=10, save_path='LayerNorm')



3. 权重归一化

  • 权重归一化(Weight Normalization)
    • 权重归一化是通过对模型权重进行归一化,而不是对输入数据进行归一化。它可以在训练过程中动态地调整权重的尺度,以改善模型的训练效果。

4. 局部响应归一化

  • 局部响应归一化(Local Response Normalization,LRN)
    • LRN是一种在卷积神经网络中常用的归一化方法,它通过对每个神经元的输出进行归一化,以增强模型对局部输入模式的响应能力。
    • 局部响应归一化和层归一化都是对同层的神经元进行归一化.不同的是,局部响应归一化应用在激活函数之后,只是对邻近的神经元进行局部归一化,并且不减去均值。

5. 代码整合

(以批量归一化为例)

import os
import torch
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from d2l import torch as d2l
from sklearn.datasets import load_iris
from torchvision.io import read_image
from torch.utils.data import Dataset, DataLoader


class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric=None):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        # 用于计算评价指标
        self.metric = metric

        # 记录训练过程中的评价指标变化
        self.dev_scores = []
        # 记录训练过程中的损失变化
        self.train_epoch_losses = []
        self.dev_losses = []
        # 记录全局最优评价指标
        self.best_score = 0

    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型设置为训练模式,此时模型的参数会被更新
        self.model.train()

        num_epochs = kwargs.get('num_epochs', 0)
        log_steps = kwargs.get('log_steps', 100)
        save_path = kwargs.get('save_path', 'best_model.pth')
        eval_steps = kwargs.get('eval_steps', 0)
        # 运行的step数,不等于epoch数
        global_step = 0

        if eval_steps:
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None')

        # 遍历训练的轮数
        for epoch in range(num_epochs):
            total_loss = 0
            # 遍历数据集
            for step, data in enumerate(train_loader):
                x, y = data
                logits = self.model(x.float())
                loss = self.loss_fn(logits, y.long())
                total_loss += loss
                if step % log_steps == 0:
                    print(f'loss:{loss.item():.5f}')

                loss.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()
            # 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件
            if eval_steps != 0:
                if (epoch + 1) % eval_steps == 0:

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')

                    if dev_score > self.best_score:
                        self.save_model(f'model_{epoch + 1}.pth')

                        print(
                            f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')
                        self.best_score = dev_score

                    # 验证过程结束后,请记住将模型调回训练模式
                    self.model.train()

            global_step += 1
            # 保存当前轮次训练损失的累计值
            train_loss = (total_loss / len(train_loader)).item()
            self.train_epoch_losses.append((global_step, train_loss))
        self.save_model(f'{save_path}.pth')
        print('[Train] Train done')

    # 模型评价阶段
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None
        # 将模型设置为验证模式,此模式下,模型的参数不会更新
        self.model.eval()
        global_step = kwargs.get('global_step', -1)
        total_loss = 0
        self.metric.reset()

        for batch_id, data in enumerate(dev_loader):
            x, y = data
            logits = self.model(x.float())
            loss = self.loss_fn(logits, y.long()).item()
            total_loss += loss
            self.metric.update(logits, y)

        dev_loss = (total_loss / len(dev_loader))
        self.dev_losses.append((global_step, dev_loss))
        dev_score = self.metric.accumulate()
        self.dev_scores.append(dev_score)
        return dev_score, dev_loss

    # 模型预测阶段,
    def predict(self, x, **kwargs):
        self.model.eval()
        logits = self.model(x)
        return logits

    # 保存模型的参数
    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    # 读取模型的参数
    def load_model(self, model_path):
        self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))


def plot_training_loss_acc(runner, fig_name, fig_size=(16, 6), sample_step=20, loss_legend_loc='upper right',
                           acc_legend_loc='lower right',
                           train_color='#8E004D', dev_color='#E20079', fontsize='x-large', train_linestyle='-',
                           dev_linestyle='--'):
    plt.figure(figsize=fig_size)
    plt.subplot(1, 2, 1)
    train_items = runner.train_epoch_losses[::sample_step]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]

    plt.plot(train_steps, train_losses, color=train_color, linestyle=train_linestyle, label='Train loss')
    if len(runner.dev_losses) > 0:
        dev_steps = [x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color=dev_color, linestyle=dev_linestyle, label='dev loss')

    plt.ylabel('loss')
    plt.xlabel('step')
    plt.legend(loc=loss_legend_loc)
    if len(runner.dev_scores) > 0:
        plt.subplot(1, 2, 2)
        plt.plot(dev_steps, runner.dev_scores, color=dev_color, linestyle=dev_linestyle, label='dev accuracy')

        plt.ylabel('score')
        plt.xlabel('step')
        plt.legend(loc=acc_legend_loc)
    # 将绘制结果保存
    plt.savefig(fig_name)
    plt.show()


def read_csv_labels(fname):
    """读取fname来给标签字典返回一个文件名"""
    with open(fname, 'r') as f:
        # 跳过文件头行(列名)
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name, label) for name, label in tokens))


class CIFAR10Dataset(Dataset):
    def __init__(self, folder_path, fname):
        self.labels = read_csv_labels(os.path.join(folder_path, fname))
        self.folder_path = os.path.join(folder_path, 'train')

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')
        label = self.labels[str(idx + 1)]

        return img, torch.tensor(int(label))


def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
    if not torch.is_grad_enabled():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
            # 这里我们需要保持X的形状以便后面可以做广播运算
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
        # 训练模式下,用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 缩放和移位
    return Y, moving_mean.data, moving_var.data


class BatchNorm(nn.Module):
    # num_features:完全连接层的输出数量或卷积层的输出通道数。
    # num_dims:2表示全连接层,4表示卷积层
    def __init__(self, num_features, num_dims):
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 非模型参数的变量初始化为0和1
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.ones(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var 复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y


batch_size = 20
# cifar10_tiny是卷积神经网络那节课的数据集的文件夹
train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')
train_iter = DataLoader(train_data, batch_size=batch_size)

num_classes = 10
# 定义模型
net = nn.Sequential(
    nn.Conv2d(3, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(400, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
    nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
    nn.Linear(84, 10))
# 定义损失函数
loss_fn = F.cross_entropy
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)

runner = Runner(net, optimizer, loss_fn, metric=None)
runner.train(train_iter, num_epochs=10, save_path='BatchNorm')

# 第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta
print(net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,)))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/155385.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用uniapp写小程序,真机调试的时候不显示log

项目场景: 当小程序文件太大的情况下使用真机调试,但是真机调试的调试器没有任何反应 问题描述 使用uniapp写小程序,真机调试的时候不显示log 原因分析: 提示:因为真机调试的时候没有压缩文件,所以调试的…

为React Ant-Design Table增加字段设置 | 京东云技术团队

最近做的几个项目经常遇到这样的需求,要在表格上增加一个自定义表格字段设置的功能。就是用户可以自己控制那些列需要展示。 在几个项目里都实现了一遍,每个项目的需求又都有点儿不一样,迭代了很多版,所以抽时间把这个功能封装了…

基于STM32婴儿床检测控制系统及源程序

一、系统方案 1、本设计采用STM32单片机作为主控器。 2、DHT11检测湿度,液晶OLED显示,声音检测声音,有声音或尿床,蜂鸣器报警。 3、手机APP可以控制音乐播放。 二、硬件设计 原理图如下: 三、单片机软件设计 1、首先…

cookie机制

目录 为什么会有cookie?? cookie从哪里来的?? cookie到哪里去?? cookie有啥用?? session HttpServletRequest类中的相关方法 简单的实现cookie登录功能 实现登录页面 实现servlet逻辑 实现生成主…

R语言——taxize(第二部分)

taxize(第二部分) 3. taxize 文档中译3.10. classification(根据类群ID检索分类阶元层级)示例1:传递单个ID值示例2:传递多个ID值示例3:传递单个名称示例4:传递多个名称示例5&#xf…

用script去做前端html表格分页/排序

前言: 掘弃掉与后端交互做分页和互导,有利有弊吧; 在小数据的时候,如果不停来回朝服务端发送请求,会造成堵塞.于是,放弃了之前的前后端ajax方式去请求分页表格,使用script去弄一个,降低服务器的压力; 整体思路图: 代码构造: {% extends "order_header_same.html" …

如何通过 wireshark 捕获 C# 上传的图片

一:背景 1. 讲故事 这些天计划好好研究下tcp/ip,以及socket套接字,毕竟工控中设计到各种交互协议,如果只是模模糊糊的了解,对分析此类dump还是非常不利的,而研究协议最好的入手点就是用抓包工具 wireshar…

Trigger替换Demo

maven工程 pom依赖 <dependency><groupId>org.quartz-scheduler</groupId><artifactId>quartz</artifactId><version>2.2.1</version> </dependency> import org.quartz.Job; import org.quartz.JobExecutionContext; imp…

2023.11.16 hivesql高阶函数之开窗函数

目录 1.开窗函数的定义 2.数据准备 3.开窗函数之排序 需求:用三种排序方法查询学生的语文成绩排名,并降序显示 4.开窗函数分组 需求:按照科目来分类,使用三种排序方式来排序学生的成绩 5.聚合函数与分组配合使用 6.聚合函数同时和分组以及排序关键字配合使用 --需求1&…

设置float浮动

用途&#xff1a;用来实现并行。常用在div等块元素并行显示。 设置右浮动代码&#xff1a;float: right; 设置左浮动代码&#xff1a;float: left; 注意&#xff1a; 1.要浮动&#xff0c;所有盒子都要设置浮动。 2.行内元素如span&#xff0c;添加了float属性过后宽度和高…

iOS学习 --- Xcode 15 下载iOS_17.0.1_Simulator失败解决方法

1.去开发者官网下载安装包 https://developer.apple.com/download/all/?qiOS%2017 使用浏览器下载。 2.打开终端通过命令添加到xcode 命令如下&#xff1a; sudo xcode-select -s /Applications/Xcode.app(输入开始密码)xcodebuild -runFirstLaunch (等待一小会)xcrun simctl…

【LabVIEW学习】2.for,while,事件

1.for实例&#xff08;随机输出数据100次&#xff09; 结果&#xff1a; 2.while实例&#xff08;i<50灯亮&#xff0c;大于之后灯灭&#xff09; 结果&#xff1a;&#xff08;先亮后灭&#xff09; 3.事件结构的实例&#xff08;点击按钮数据增加&#xff09;事件监听应该…

解决 requests 2.28.x 版本 SSL 错误

最近&#xff0c;在使用requests 2.28.1版本进行HTTP post传输时&#xff0c;您可能遇到了一个问题&#xff0c;即SSL验证失败并显示错误消息(Caused by SSLError(SSLCertVerificationError(1, [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get loc…

用归并排序算法merge_sort( )求解 逆序对的数量 降低时间复杂度为 nlogn

题目简述 给定一个序列有n个数&#xff0c;求n个数中逆序对的个数&#xff0c;逆序对的定义&#xff1a;i < j && a[i] > a[j]。 输入格式 第一行包含一个整数n。 第二行包含 n 个整数&#xff08;所有整数均在1~1e9范围内&#xff09;&#xff0c;表示整数数…

京东联盟flutter插件使用方法

目录 1.京东联盟官网注册申请步骤略~2.安卓端插件配置&#xff1a;3.IOS端插件配置4.其它配置5.京东OAuth授权 文档地址&#xff1a;https://baiyuliang.blog.csdn.net/article/details/134444104 京东联盟flutter插件地址&#xff1a;https://pub.dev/packages/jdkit 1.京东联…

卷积神经网络(CNN)衣服图像分类的实现

文章目录 前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;我的环境&#xff1a; 2. 导入数据3.归一化4.调整图片格式5. 可视化 二、构建CNN网络模型三、编译模型四、训练模型五、预测六、模型评估 前期工作 1. 设置GPU&#xff08;如果使用的是CPU可以…

Python+Selenium WebUI自动化框架 -- 基础操作封装

前言&#xff1a; 封装Selenium基本操作&#xff0c;让所有页面操作一键调用&#xff0c;让UI自动化框架脱离高成本、低效率时代&#xff0c;将用例的重用性贯彻到极致&#xff0c;让烦人的PO模型变得无所谓&#xff0c;让一个测试小白都能编写并实现自动化。 知识储备前提&a…

IDEA 快捷键汇总

目录 1、altinsert 2、ctrl/ 3、altenter 4、alt回车 5、ctrlD 6、ctrlaltL 7、ctrl点击 8、alt左键向下拉 9、ctrlaltv 10、ctrlaltwint 1、altinsert 快速创建代码&#xff0c;可以快速创建类中get set tostring等方法 2、ctrl/ 单行注释 3、altenter…

Elasticsearch 8.9 Bulk批量给索引增加数据源码

一、相关API的handler二、RestBulkAction&#xff0c;组装bulkRequest调用TransportBulkAction三、TransportBulkAction 会把数据分发到数据该到的数据节点1、把数据按分片分组&#xff0c;按分片分组数据再发送到指定的数据节点(1) 计算此文档发往哪个分片1)根据索引是否是分区…

三菱FX3U小项目—自锁控制与故障报警

目录 一、项目描述 二、IO口分配 三、项目程序 四、总结 一、项目描述 当按下启动按钮时&#xff0c;电机通电运转&#xff0c;当按下停止按钮时&#xff0c;电动机断电停止&#xff1b;当设备检修旋钮得电时&#xff0c;电动机停止并且故障指示灯闪烁1s&#xff1b;当电动…
最新文章