2.6 浮点运算方法和浮点运算器

 

学习目标:

以下是一些具体的学习目标:

  1. 理解浮点数的基本概念和表示方法,包括符号位、指数和尾数。
  2. 学习浮点数的运算规则和舍入规则,包括加、减、乘、除、开方等。
  3. 了解浮点数的常见问题和误差,例如舍入误差、溢出、下溢等,并学会如何处理这些问题。
  4. 理解浮点运算器的基本结构和工作原理,包括流水线结构、乘法器、除法器、寄存器堆等。
  5. 掌握浮点运算器的设计方法和流程,包括需求分析、算法设计、电路设计、仿真测试等。

学习步骤

要学习浮点运算方法和浮点运算器,我会采取以下步骤:

  1. 了解浮点数的表示方法:浮点数采用科学计数法表示,由符号位、阶码和尾数组成。需要了解浮点数的精度和范围,以及IEEE浮点数标准的基本规定。

  2. 熟悉浮点数的运算规则:浮点数的加减乘除运算需要按照一定的规则进行,例如对齐、舍入等。需要掌握这些规则的具体实现方式。

  3. 学习浮点运算器的基本结构和工作原理:浮点运算器主要由运算单元、控制单元、寄存器和数据通路等组成,需要了解它们的功能和相互关系。

  4. 掌握浮点运算器的设计方法:浮点运算器的设计需要考虑运算速度、精度、功耗等多个方面的因素。需要学习各种优化技术,如流水线、并行处理、指令重排等,以提高浮点运算器的性能。

  5. 实践和应用:通过编写浮点数运算的程序或使用现有的浮点运算库,进行实践和应用,检验所学知识的正确性和有效性。

以上步骤可以结合相关的课程、书籍、论文和实验项目等进行学习。还可以参加相关的研讨会或交流活动,与其他专家或同行分享经验和知识。

 

2.6.1 浮点加法 减法运算

浮点加法和减法运算是浮点运算中最基本和常见的操作之一。

浮点加法运算的基本思路是将两个浮点数的指数对齐,然后对齐后的尾数进行相加。具体步骤如下:

  1. 判断两个浮点数的指数大小,将指数较小的浮点数的尾数乘以一个系数(尾数乘积),使得两个浮点数的指数相同。

  2. 对齐后的尾数进行相加,得到相加结果的尾数。

  3. 对相加结果的尾数进行规格化处理,即将尾数左移或右移,使得尾数的最高位为1。

  4. 将相加结果的尾数和指数组成一个新的浮点数,得到加法运算的结果。

浮点减法运算可以转化为加法运算,即将减数取相反数,然后进行加法运算。

需要注意的是,在进行浮点加减法运算时,需要考虑一些特殊情况,例如:

  1. 溢出:如果加法运算的结果超出了浮点数的表示范围,就会发生溢出。

  2. 下溢:如果加法运算的结果太小,无法用浮点数表示,就会发生下溢。

  3. 非规格化数和规格化数的加减法:在进行浮点数加减法时,需要考虑非规格化数和规格化数的情况,并进行相应的处理。

  4. NaN(Not a Number)的处理:如果加法运算的结果为NaN,需要按照IEEE 754标准的规定进行处理。

浮点减法运算与加法运算类似,也需要考虑上述特殊情况。

 2.6.2 浮点乘法、除法运算

浮点数乘法和除法是计算机中常用的浮点运算。下面分别介绍浮点乘法和除法的实现原理。

  1. 浮点乘法运算

浮点数乘法运算的基本原理与十进制数乘法运算类似,即将两个数的小数部分相乘,然后将指数相加,最后得到结果并进行规格化处理。具体实现时,一般采用以下步骤:

(1)将两个浮点数的指数相加,得到新的指数值。

(2)将两个浮点数的尾数相乘,得到一个结果。

(3)根据结果的大小,调整指数值和尾数值的规模,以确保结果在规定的浮点数范围内。

(4)将调整后的指数值和尾数值合并成一个新的浮点数表示结果。

需要注意的是,在实现浮点乘法运算时,还需要考虑溢出和舍入等问题,以确保计算结果的精度和正确性。

  1. 浮点除法运算

浮点数除法运算的基本原理与十进制数除法运算类似,即将两个数的小数部分相除,然后将指数相减,最后得到结果并进行规格化处理。具体实现时,一般采用以下步骤:

(1)将被除数和除数的指数相减,得到新的指数值。

(2)将被除数和除数的尾数相除,得到一个结果。

(3)根据结果的大小,调整指数值和尾数值的规模,以确保结果在规定的浮点数范围内。

(4)将调整后的指数值和尾数值合并成一个新的浮点数表示结果。

同样需要注意的是,在实现浮点除法运算时,还需要考虑除数是否为0、除法精度、溢出和舍入等问题,以确保计算结果的精度和正确性。

浮点数乘法和除法的实现都需要考虑多个细节问题,因此需要在学习中仔细理解和掌握相关的概念和算法,同时进行大量的实践练习,以熟练掌握浮点运算的原理和实现方法。

2.6.3 浮点运算流水线 

浮点运算流水线是一种用于执行浮点运算的高效技术,可以将一个复杂的浮点运算任务分解成多个阶段,每个阶段都由一个专门的硬件模块来完成,并通过流水线的方式,让这些模块并行工作,从而提高浮点运算的效率。

一个典型的浮点运算流水线包括以下阶段:

  1. 译码阶段:解析指令,确定需要进行的浮点运算类型和操作数。
  2. 寄存器读取阶段:从寄存器文件中读取需要参与运算的操作数。
  3. 乘法器或加法器阶段:执行实际的浮点运算。
  4. 规格化阶段:将浮点运算结果规格化,使其符合IEEE 754标准的规定。
  5. 舍入阶段:根据舍入模式对规格化结果进行舍入,得到最终结果。
  6. 写回阶段:将运算结果写回寄存器文件。

每个阶段都可以由一个专门的硬件模块来完成,这些硬件模块可以并行工作,从而实现高效的浮点运算。此外,流水线还可以支持流水线暂停、流水线清空等操作,从而增强了浮点运算的控制和灵活性。

需要注意的是,浮点运算流水线的设计和实现需要考虑到数据相关性、流水线停顿、异常处理等因素,以确保流水线的正确性和稳定性。

 

 

 

 

 

 

 

 总结:

浮点运算方法和浮点运算器的重点和难点主要有以下几个方面:

1.浮点数的表示方法和规范:浮点数采用科学计数法表示,分为符号位、尾数和指数三部分。IEEE 754是目前最常用的浮点数规范。

2.浮点数的运算原理:浮点数加减法的原理是对齐、舍入、加减,乘法的原理是对阶、相乘、规格化,除法的原理是对阶、除、规格化。

3.浮点运算器的结构和实现方法:浮点运算器通常采用流水线结构实现,每个流水线阶段负责一部分运算操作。浮点运算器的设计需要考虑精度、速度、功耗等方面的权衡。

4.误差分析和处理:由于浮点数的表示精度有限,浮点运算可能会引入误差。误差的分析和处理对于保证计算结果的正确性和精度非常重要。

5.软硬件协同设计:浮点运算器通常是硬件实现,但在某些场合下,采用软件实现浮点运算可以更灵活地适应不同的应用需求。因此,在设计浮点运算器时需要考虑软硬件协同设计的问题。

易错点包括:

1.对浮点数表示规范的理解不清,导致误解浮点数的存储和运算方法。

2.在浮点数运算过程中,舍入误差的产生和传递被忽视,导致最终计算结果与真实值有较大的误差。

3.对于流水线结构的浮点运算器,数据相关和控制相关的问题容易引起故障。

4.在软硬件协同设计中,软件的误差控制和硬件的实现方式之间的适配不良,导致计算结果的错误。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/15987.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FPGA实现10G万兆网UDP通信 10G Ethernet Subsystem替代网络PHY芯片 提供工程源码和技术支持

目录 1、前言2、我这里已有的UDP方案3、详细设计方案传统 FPGA UDP 方案本 FPGA 10G UDP 方案(牛逼)10G Ethernet 框图10G Ethernet 发送解析10G Ethernet 接收解析10G Ethernet 寄存器配置10G Ethernet UI 配置 4、vivado工程详解5、上板调试验证并演示ping功能测试数据收发测…

一款支持全文检索、工作流审批、知识图谱的企事业知识库

一、项目介绍 一款全源码,可二开,可基于云部署、私有部署的企业级知识库云平台,一款让企业知识变为实打实的数字财富的系统,应用在需要进行文档整理、分类、归集、检索、分析的场景。 获取方式q:262086839 为什么建立知识库平台&…

perf record对C++程序耗时进行分析

本节将介绍如何使用perf工具的perf record对C代码进行性能分析,一切操作都是在ubuntu 20下进行。 perf工具安装 由于perf工具和内核版本有关,因此直接安装容易出错,建议直接通过如下指令安装: sudo apt-get install linux-tool…

00后卷王的自述,我难道真的很卷?

前言 前段时间去面试了一个公司,成功拿到了offer,薪资也从12k涨到了18k,对于工作都还没两年的我来说,还是比较满意的,毕竟一些工作3、4年的可能还没我高。 我可能就是大家说的卷王,感觉自己年轻&#xff…

独立IP服务器和共享IP服务器有什么区别

在选择一个合适的服务器时,最常见的选择是共享IP服务器和独立IP服务器。尽管两者看起来很相似,但它们有着很大的不同。本文将详细介绍共享IP服务器和独立IP服务器的不同之处,以及如何选择适合您需求的服务器。 一、什么是共享IP服务器? 共享…

Python探索性P图,四种增强方式快速玩转pillow库

嗨害大家好鸭!我是爱摸鱼的芝士❤ 我们平时使用一些图像处理软件时, 经常会看到其对图像的亮度、对比度、色度或者锐度进行调整。 你是不是觉得这种技术的底层实现很高大上? 其实最基础的实现原理, 用 Python 实现只需要几行…

Java JDK下载安装环境变量配置

目录 一、下载安装 1.简介 2.JDK下载JDK 官网海外历史地址: 3.安装 二、环境变量配置 1.新建JAVA_HOME变量 2.PATH变量 3.CLASSPATH 变量 4.测试是否安装成功 一、下载安装 1.简介 JDK 是SUN公司提供的一套Java 语言的软件开发工具包,简称JDK(JavaDevelo…

如何编写高质量代码

如何编写高质量代码 1. 前言2. 明确业务场景和用户需求3. 编程实践技巧3.1 提高命名规范3.2 保持代码简洁3.3 好的注释 4. 软件测试5. 总结 1. 前言 现代软件开发中,代码是构建高质量软件的核心。高质量代码能够提高软件系统的可靠性、可维护性和可扩展性&#xff…

给失业的互联网人一个思路:别再苦苦找工作了,要去找门槛低、现金流好、天花板低、资本看不上的创业项目,一年也能几百万!...

失业大潮中的互联网人该何去何从?这大概是许多人在难捱的深夜反复思考的问题。 一位失业很久的网友就在痛苦思索中悟出了适合自己的道路,下面分享给大家,篇幅太长,小编给大家划一下重点。 先说结论:失业的互联网人别再…

浅谈软件测试工程师的技能树

软件测试工程师是一个历史很悠久的职位,可以说从有软件开发这个行业以来,就开始有了软件测试工程师的角色。随着时代的发展,软件测试工程师的角色和职责也在悄然发生着变化,从一开始单纯的在瀑布式开发流程中担任测试阶段的执行者…

优思学院:什么是快速改善方法(Kaizen Blitz)?

什么是快速改善方法(Kaizen Blitz)? Kaizen blitz是精益管理中的一种方法,指通过集中一段时间内的团队努力来实现快速改进的方法。 Kaizen是一个日语词汇,意为“改善”,是一种广泛应用于企业管理的哲学&a…

明确自动化测试目的

明确自动化测试目的 1.提高测试人员的工作成就感和幸福感,减少手工测试中重复性的工作 目前,在大部分中小企业中,手工测试在日常测试工作占据的比例很大。测试人员必须跟随开发团队不断地进行选代式开发和测试。一个功能模块可能在整个测试周…

SEO机制算是让我玩明白了

获取当前时间时间戳,返回遵循ISO 8601扩展格式的日期 new Date(Date.now()).toISOString() 使用moment库转换回来 this.moment(new Date(Date.now()).toISOString()).format("YYYY-MM-DD") js去掉富文本中html标签和图片 filterHtmlTag(val) {if(!val){…

vue性能优化之虚拟列表滚动

一、前言 前端的性能瓶颈那就是页面的卡顿,当然这种页面的卡顿包含了多种原因。 例如HTTP请求过多导致数据加载变慢,下载的静态文件非常大导致页面加载时间很长,js中一些算法响应的时间过长等。很多前端工程师都花费很多的精力在dom渲染上来…

Docker概念|容器|镜像|命令详细(创建,删除,修改,添加)

Docker概念|容器|镜像|命令详细(创建,删除,修改,添加) 一,Docker简介二,Docker与虚拟机的区别三,容器核心技术四,Docker核心概念五 docker的安装5.1关闭防火墙,关闭文件防…

python毕业设计之django+vue.js幼儿园网站系统

开发语言:Python 框架:django Python版本:python3.7.7 数据库:mysql 数据库工具:Navicat 开发软件:PyCharm 采用了Windows10操作系统平台,使用HTMLCSSJS前端模板django作为后台监控&#xff0…

【VM服务管家】VM4.x算子SDK开发_3.2 公用工具类

目录 3.2.1 图像载入:本地图像的载入方法3.2.2 相机取流:相机SDK取流的方法3.2.3 输入图像:给算子模块输入图像数据的方法3.2.4 实时取流:实时取流的实现方法3.2.5 卡尺ROI:卡尺型ROI的生成方法3.2.6 DL算子耗时&#…

ref在Vue2、Vue3中的使用

文章目录 前言一、ref在Vue2中的用法二、ref在Vue3中的用法 前言 记录一下ref在Vue2与Vue3中的使用,ref可以获取DOM元素,也可以获取子组件的数据、方法。 一、ref在Vue2中的用法 给元素绑定一个ref,然后在js中通过this.$refs获取DOM。 ref命…

从大厂到创业公司,管理上需要怎样转变?

你好,我是舒超。 我职业生涯过去十年的上半段在腾讯负责微博微群、消息流广告、视频评论等社交型的业务系统,下半段在美团基础架构负责云原生基础设施的演进工作,现在星汉未来担任CTO,负责公司产研推进工作。加入星汉未来的时间点…

带你搞懂人工智能、机器学习和深度学习!

不少高校的小伙伴找我聊入门人工智能该怎么起步,如何快速入门,多长时间能成长为中高级工程师(聊下来感觉大多数学生党就是焦虑,毕业即失业,尤其现在就业环境这么差),但聊到最后,很多…
最新文章