动手学深度学习——循环神经网络的从零开始实现(原理解释+代码详解)

文章目录

    • 循环神经网络的从零开始实现
      • 1. 独热编码
      • 2. 初始化模型参数
      • 3. 循环神经网络模型
      • 4. 预测
      • 5. 梯度裁剪
      • 6. 训练

循环神经网络的从零开始实现

从头开始基于循环神经网络实现字符级语言模型。

# 读取数据集
%matplotlib inline
import math
import torch


from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

1. 独热编码

每个词元都有一个对应的索引,表示为特征向量,即每个索引映射为相互不同的单位向量。

词元表不同词元个数为N,词元索引范围为0到N-1。词元的索引为整数,那么将创建一个长度为N的全0向量,并将第i处元素设置为1。则此向量是原始词元的一个独热编码。

假如有2个词元"cat"和"dog"

  • "cat"对应:[1, 0]
  • "dog"对应:[0, 1]

索引为0和2的独热向量

# 索引为0和2的独热向量
F.one_hot(torch.tensor([0, 2]), len(vocab))

在这里插入图片描述
采样的小批量数据形状为二维张量:(批量大小,时间步数),one_hot函数将其转换为三维张量:(时间步数,批量大小,词表大小)

# 采样的小批量数据形状为二维张量:(批量大小,时间步数)
# one_hot函数将其转换为三维张量:(时间步数,批量大小,词表大小)
# 方便我们通过最外层维度,一步一步更新小批量数据的隐状态
X = torch.arange(10).reshape((2, 5))
print(F.one_hot(X.T, 28).shape)
# 显示第一行
F.one_hot(X.T, 28)[0,:,:]

在这里插入图片描述

2. 初始化模型参数

隐藏单元数num_hiddens是一个可调的超参数

训练语言模型时,输入和输出来自相同的词表,具有相同的维度即词表大小

"""
初始化模型参数:
    1、隐藏层参数
    2、输出层参数
    3、附加梯度
"""
# (词表大小,隐藏层数,设备)
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size
    
    # 定义函数normal(),初始化模型的参数
    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01
    
    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

3. 循环神经网络模型

定义init_rnn_state函数在初始化时返回隐状态,该函数的返回是一个张量,张量全用0填充,形状为(批量大小,隐藏单元数)。

# 定义init_rnn_state函数在初始化时返回隐状态
# 该函数的返回是一个张量,张量全用0填充,形状为(批量大小,隐藏单元数)
def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

在这里插入图片描述
循环神经网络通过最外层的维度实现循环,以便时间步更新小批量数据的隐状态H

# 循环神经网络通过最外层的维度实现循环,以便时间步更新小批量数据的隐状态H
def rnn(inputs, state, params):
    # inputs的形状:(时间步数量,批量大小,词表大小)
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # X的形状:(批量大小,词表大小)
    for X in inputs:
        # 激活函数tanh,更新隐状态H
        H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
        Y = torch.mm(H, W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数

"""
从零开始实现的循环神经网络模型:
1、定义网络模型的参数
2、对词表进行独热编码
3、初始化模型参数并返回隐状态
"""
class RNNModelScratch: #@save
    """从零开始实现的循环神经网络模型"""
    # 定义类的初始化,将传入的参数赋值给对象的属性,以便后续使用
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        # 对输入进行独热编码,返回状态及参数
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        # 初始化参数
        return self.init_state(batch_size, self.num_hiddens, device)

检查输出是否具有正确的形状。 例如,隐状态的维数是否保持不变。

num_hiddens = 512
# 网络模型
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                     init_rnn_state, rnn)
# 获得网络初始状态
state = net.begin_state(X.shape[0], d2l.try_gpu())
# 将X移到GPU上,并且返回输出Y和状态
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape

在这里插入图片描述
可以看到输出形状是(时间步数x批量大小,词表大小), 而隐状态形状保持不变,即(批量大小,隐藏单元数)。

4. 预测

定义预测函数

"""
定义预测函数:
1、prefix是用户提供的字符串;
2、循环遍历prefix的开始字符时不输出,不断将隐状态传递给下一个时间步;
3、在此期间模型进行自我更新(隐状态),不进行预测;
4、2和3步骤称为预热期,预热期过后隐状态的值更适合预测,从而预测字符并输出。
"""
# prefix:前缀字符串
def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    # 匿名函数:改变输出的形状
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    # 预热期:不进行输出
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    # 预热期过了之后,进行预测
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])

测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符

# 测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符。
# 未训练模型,输出预测结果没有联系
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())

在这里插入图片描述

5. 梯度裁剪

为什么要梯度裁剪:
1、对于长度为T的序列,我们在迭代中计算T个时间步上的梯度,在反向传播过程中产生长度为T的矩阵乘法链;
2、T较大时,会导致数值不稳定,例如梯度消失或者梯度爆炸。

一个流行的替代方案是通过将梯度g投影回给定半径 (例如θ)的球来裁剪梯度g。
在这里插入图片描述

def grad_clipping(net, theta):  #@save
    """裁剪梯度"""
    if isinstance(net, nn.Module):
        # 附加梯度的参数
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        # 梯度的范数:对应图里作为分母的"||g||"
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    # 如果梯度过大,将其限制到θ
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

6. 训练

在一个迭代周期内训练模型:
1、序列数据的不同采样方法(随机采样和顺序分区)将导致状态初始化的差异;
2、在更新模型参数之前裁剪梯度,这样可以保证训练过程中如果某点发生梯度爆炸,模型也不会发散;
3、用困惑度评价模型,使得不同长度的序列也有了可比性。

  • 顺序分区:只在每个迭代周期的开始位置初始化隐状态。
  • 随机抽样:每个样本都是在一个随机位置抽样的,因此需要在每个迭代周期重新初始化隐状态。
#@save
"""
训练网络一个迭代周期:
1、初始化状态,将数据传到GPU上
2、计算损失,进行梯度裁剪并更新模型参数
"""
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期(定义见第8章)"""
    # 状态,时间
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量
                # detach_()将张量从计算图中分离出来,不会影响到原始张量
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
        # 将Y 进行转置并展平成一维向量
        y = Y.T.reshape(-1)
        # 将X,y移动到设备上,并且输入到模型中
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        # 如果更新器 updater 是 torch.optim.Optimizer 类型,则调用 updater.step() 方法进行参数更新;
        # 否则调用 updater(batch_size=1) 进行参数更新。
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad() # 梯度置零
            l.backward() # 反向传播,知道如何调整参数以最小化损失函数
            grad_clipping(net, 1) # 梯度裁剪
            updater.step() # 使用优化器来更新参数
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        # y.numel()计算y中元素数量
        metric.add(l * y.numel(), y.numel())
    # 使用指数损失函数计算累积平均困惑度 math.exp(metric[0] / metric[1]) 和训练速度 metric[1] / timer.stop()。
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
            
  • updater.zero_grad(): 这一行代码将模型参数的梯度置零,以便在每次迭代中计算新的梯度。
  • l.backward(): 这一行代码使用反向传播算法计算损失函数对模型参数的梯度。通过计算梯度,我们可以知道如何调整模型参数以最小化损失函数。
  • grad_clipping(net, 1): 这一行代码对模型的梯度进行裁剪,以防止梯度爆炸的问题。梯度爆炸可能会导致训练不稳定,裁剪梯度可以限制梯度的范围。
  • updater.step(): 这一行代码使用优化器(如SGD、Adam等)来更新模型的参数。优化器根据计算得到的梯度和预定义的学习率来更新模型参数,以使模型更好地拟合训练数据。

循环神经网络的训练函数也支持高级API实现

# 循环神经网络的训练函数也支持高级API实现
#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """训练模型(定义见第8章)"""
    loss = nn.CrossEntropyLoss()
    # 动画窗口:窗口显示一个图例,图例名称为 "train",x 轴的范围从 10 到 num_epochs
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        # 每10个epoch,对输入字符串进行预测,并将预测结果添加到动画中
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛

# 在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())

在这里插入图片描述
检查一下随机抽样方法的结果

# 检查一下随机抽样方法的结果
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                     init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),
         use_random_iter=True)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/161439.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

机器学习算法——集成学习

目录 1. Bagging 1. Bagging Bagging(bootstrap aggregating:自举汇聚法)也叫装袋法,其思想是通过将许多相互独立的学习器的结果进行结合,从而提高整体学习器的泛化能力,是一种并行集成学习方法。 工作流…

计算机msvcp120.dll丢失?msvcp120.dll丢失5种简单的解决方法分享

你们是否在电脑操作过程中常看到一段类似“msvcp120.dll缺失或损坏”的报错信息?这可能会干扰大家的日常应用程序使用,怎么办呢?别担心,接下来就是一篇详细的步骤来教你如何应对这种情况,让你们的电脑运作如初&#xf…

Cadence virtuoso drc lvs pex 无法输入

问题描述:在PEX中的PEX options中 Ground node name 无法输入内容。 在save runset的时候也出现无法输入名称的情况 解决办法: copy一个.bashrc文件到自己的工作目录下 打开.bashrc文件 在.bashrc中加一行代码:unset XMODIFIERS 在终端sour…

无需API开发,伯俊科技实现电商与客服系统的无缝集成

伯俊科技的无代码开发实现系统连接 自1999年成立以来,伯俊科技一直致力于为企业提供全渠道一盘货的服务。凭借其24年的深耕零售行业的经验,伯俊科技推出了一种无需API开发的方法,实现电商系统和客服系统的连接与集成。这种无代码开发的方式不…

【Proteus仿真】【STM32单片机】防火防盗GSM智能家居设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器,使用声光报警模块、LCD1602显示模块、DS18B20温度、烟雾传感器模块、按键模块、PCF8591 ADC模块、红外检测模块等。 主要功能: 系统运行…

Linux--初识和几个简单的指令(1)

目录 前言 0.什么是操作系统 0.1 搭建 Linux 环境 0.2搭建 Linux 环境小结 1.使用 XShell 远程登录 Linux 1.1关于 Linux 桌面 1.2下载安装 XShell 1.3查看 Linux 主机 ip 1.4XShell 下的复制粘贴 2.Linux下基本指令 2.1 pwd命令 2.2 ls命令 2.3 mkdir指令 2.4 cd…

vue2项目封装axios(vite打包)

1.安装 npm i axios 2.封装axios 说明:request.js文件 //对axios进行二次封装 import axios from "axios" import "nprogress/nprogress.css"// 当前模块中引入store // import store from "/store"// 引入进度条import nprogress f…

【C++】泛型编程 ⑥ ( 类模板 | 类模板语法 | 代码示例 )

文章目录 一、类模板1、类模板引入2、声明类模板语法3、调用类模板语法 二、代码示例 - 类模板1、代码示例2、执行结果 一、类模板 1、类模板引入 类模板 与 函数模板 的 作用类似 , 当 多个类 功能相同 , 只是数据类型不同 , 此时可以 定义一个类模板 代替 定义多个类 ; 借助…

Python (十) 元组

元组 元组与列表类似,不同之处在于元组的元素不能修改。 元组使用小括号 ( ),列表使用方括号 [ ]。 元组创建只需要在括号中添加元素,并使用逗号隔开即可。 访问 tup1 (hello,Java,Python,123,456) print(type(tup1)) print(tup1[1])#输出 …

微信个人号api

简要描述: 登录E云平台 请求URL: http://域名地址/member/login域名地址开发者账号密码:后台系统自助开通 请求方式: POST 请求头Headers: Content-Type:application/json 参数: 参数名必选类型说…

F. Alex‘s whims Codeforces Round 909 (Div. 3) 1899F

Problem - F - Codeforces 题目大意:有q次询问,每次询问给出一个数x,要求构造一棵n个点的树,使得对于每次询问,树上都有一条简单路径的长度等于x,同时每次询问前可以对树进行一次操作,即将一个…

ForkLift:macOS文件管理器/FTP客户端

ForkLift 是一款macOS下双窗口的文件管理器,可以代替本地的访达。ForkLift同时具备连接Ftp、SFtp、WebDav以及云服务器。 ForkLift还具备访达不具备的小功能,比如从文件夹位置打开终端,显示隐藏文件,制作替换等功能。ForkLift 是一…

css继承属性

在css中,继承是指的是给父元素设置一些属性,后代元素会自动拥有这些属性 关于继承属性,可以分成: 字体系列属性文本系列属性元素可见性表格布局属性列表属性引用光标属性 继承中比较特殊的几点: a 标签的字体颜色不…

Python采集智联招聘网站数据实现可视化数据

嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 环境使用: Python Pycharm模块使用: selenium --> pip install selenium3.141.0 time csv驱动下载地址: https://googlechromelabs.github.io/chrome-for-te…

MATLAB中std函数用法

目录 语法 说明 示例 矩阵列的标准差 三维数组的标准差 指定标准差权重 矩阵行的标准差 数组页的标准差 排除缺失值的标准差 标准差和均值 标准差 std函数的功能是得到标准差。 语法 S std(A) S std(A,w) S std(A,w,"all") S std(A,w,dim) S std(A…

ExcelBDD PHP Guideline

在PHP里面支持利用Excel的BDD,也支持利用Excel进行参数化测试 ExcelBDD Use Excel file as BDD feature file, get example data from Excel files, support automation tests. Features The main features provided by this library are: Read test data acco…

1334. 阈值距离内邻居最少的城市/Floyd 【leetcode】

1334. 阈值距离内邻居最少的城市 有 n 个城市,按从 0 到 n-1 编号。给你一个边数组 edges,其中 edges[i] [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold。 返回能通过某些路径…

Spring学习②__IOC分析

目录 IOC控制反转IOCIOC理论案例IOC的思想(注入)IOC底层什么是 IOCIOC 底层原理 总结 IOC 控制反转IOC ①控制反转,把对象创建和对象之间的调用过程,交给Spring进行 ②使用IOC目的:为了耦合度降低 IOC理论案例 控制…

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码

基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于算术优化算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于算术优化优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

量化交易:开发传统趋势策略之---双均线策略

本文以双均线策略为例,描述如何在BigQuant策略平台上,开发一个传统的趋势跟踪策略,以更好地理解BigQuant回测机制。 双均线策略的策略思想是:当短期均线上穿长期均线时,形成金叉,此时买入股票。当短期均线…
最新文章