linux中利用fork复制进程,printf隐藏的缓冲区,写时拷贝技术,进程的逻辑地址与物理地址

1.prinf隐藏的缓冲区

1.思考:为什么会有缓冲区的存在?

2.演示及思考?

1).演示缓存区没有存在感
那为什么我们感觉不到缓冲区的存在呢?我们要打印东西直接就打印了呢?
我们用代码演示一下:

比如打开一个main.c,输入内容如下:

 #include <stdio.h>

int main()
 {
    printf("hello");
 }

我们运行的之后直接就打印了hello,好像没有感觉到缓冲区 的存在;
原因是因为此时程序已经结束了,它会刷新缓冲区的内容;

2)演示缓冲区的存在

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
 {
 printf("hello");
 sleep(3);
 exit(0);
}

3.强制刷新
(1)方法一:遇到\n自动刷新
printf("hello\n");
(2)使用fflush刷新屏幕
fflush(stdout);

  1. _exit与exit

exit是先刷新缓冲区,然后再调用_exit(真正的退出);
_exit直接退出,不会刷新缓冲区;

比如如下的代码:

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>

int main()
 {
 printf("hello");
 //fflush(stdout);
 sleep(3);
 _exit(0);//注意这里,不输出hello
 }

5.总结
printf将内容先写入到缓冲区中,缓冲区刷新到界面(屏幕)上的条件是:
(1)缓冲区放满
(2)缓冲区未满,强制刷新缓冲区到屏幕(方法一:\n;方法二:主动刷新:fflush(stdout));
(3)程序结束时,自动刷新缓冲区:exit方法;

6.为什么会有缓冲区的存在?

屏幕是一个硬件设备,是由操作系统来管理的,因此printf打印的时候需要调用操作系统的接口才能完成,这个时候我们需要从用户态切换到内核态,这个开销是比较大的.

2.fork复制进程  (重点)

1)shell:

在计算机科学中,Shell俗称壳(用来区别于核),是指“为使用者提供操作界面”的软件(command interpreter,命令解析器)。它类似于DOS下的COMMAND.COM和后来的cmd.exe。它接收用户命令,然后调用相应的应用程序。

我们就是通过命令解释器(称为shell)(bash是命令解释器中的一种)和内核和系统进行交互的(Windows通过图形界面进行交互的);例如我们把ls交给bash,bash帮我们运行ls,然后把结果给用户;

2)fork如何复制进程?

fork是把已有的进程复制一份,当然把PCB也复制了一份,然后申请一个PID,子进程的PID=父进程的PID+1;

   如果父子进程想要做不同的事情,那么我们通过返回值来判断;
man fork

代码如下(代码下去自己练习,理解):

#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <stdlib.h>

int main()
{
    char *s=NULL;
    int n=0;//控制父子进程执行的次数;

    pid_t id=fork();
    assert(id!=-1);

    if(id==0)//子进程
    {
        s="child";
        n=3;
    }
    else//父进程
    {
        s="parent";
        n=7;
    }
     //父子进程
    int i=0;
    for(;i<n;i++)
    {
        printf("s=%s\n",s);
        sleep(1);
    }
    exit(0);
}

父子进程是两个独立的进程,各自执行各自的代码;如果父子进程要做不一样的事情,就通过if  else返回值来操作;

3)fork的时机

fork产生的这个子进程不是从头开始执行的,而是从fork之后开始执行的,就是说fork下面的代码子进程才开始执行,具体的是说从返回值这里子进程开始执行,子进程不会再fork了,所以不会出现子进程再去fork产生一个子进程的问题.
也就是说:从返回值这里开始,父进程返回子进程的PID,子进程返回0;

4)getppid与getpid

getppid:得到一个进程的父进程的PID;
getpid:得到当前进程的PID;

man getpid;
man getppid

3.fork补充:

操作系统精髓与设计原理第101页;

4.如何学好多进程以及面试考点?

1)充分理解多进程的概念(每次程序多执行几次,多理解一下)

2)考点:

fork多以笔试的形式出现;

面试的考点:

例如:

1.我们在进程中看到的地址是进程的物理地址还是逻辑地址?(为什么这么问,单进程不分物理地址和逻辑地址吗);

2.进程同步设计(比如多进程抢夺资源)(难点,用程序实现)

3.fork与文件指针

(1)fork 以后,父进程打开的文件指针位置在子进程里面是否一样?(先open再fork)
(2)能否用代码简单的验证一下?
(3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样?能否用代码简单验证一下.(先fork再open会怎么样?)

4.fork+exec

5.僵死进程原因及处理方法;

5.内存管理相关概念

1.简单分页 逻辑页 物理页 页表的概念:
从哲学层次看操作系统157页(需要详细看)

2.虚拟内存:

虚拟内存提供的三个重要的能力:
1) 它将主存看成是一个存储在磁盘上的地址空间的高速缓存,在主存中只保存活动区域,根据需要在磁盘和主存之间来回传送数据,使得能够运行比内存大的多的进程。
2) 它为每个进程提供了一致的地址空间,从而简化了存储器管理.
3) 它保护每个进程的地址空间不被其他进程破坏 .

6.写时拷贝技术

不采用写时拷贝,如何fork?

第一:复制开销比较大;
第二:占用内存空间;
所以我们对fork复制进程的过程就做了一个优化-----写时拷贝技术;

综上,就是fork的时候,子进程直接把父进程的页表复制过来,子进程发生写入(修改)的时候才分配内存复制,然后进行相应的页表修改.

写时拷贝是一种可以推迟甚至免除拷贝数据的技术.

内核设计与实现22页;

7.我们在进程中看到的地址是进程的物理地址还是逻辑地址?

我们先来看代码: (打印n的地址)

 printf("s=%s,pid=%d,ppid=%d,n的地址为:%p\n",s,getpid(),getppid(),&n);//打印n的地址

 

8.进程的逻辑地址与物理地址

父子进程中n的值都不一样,那么我们为什么看到n的地址是相同的呢?

我们在进程中看到的地址就是进程的逻辑地址(进程的4G空间,从0开始,一直往上增长);

32位系统上,都有一个0-4G的地址空间:
在Linux系统上,最上面这1G由内核使用,下面3G是用户在使用;
为什么是4G呢?在32位系统上,能够寻址的范围就是2^32=4294967296字节/1000=4294976K /1000=4294M /1000=4.29 G 约等于4G  .

而我们把所有的地址都编号,

1K=2^10 ,4K=2^12
物理页面能有多少个页面呢?4G/4K=2^32 / 212=2(32-12)=2^20个页面

所以说,父子进程逻辑地址一样,但是物理地址是不一样的;

以前我们的程序都是只有一个进程,我们逻辑地址相同,那么我们的逻辑地址映射过去的物理地址肯定也是相同的一块空间,只有一个进程,就不用刻意去理解逻辑地址和物理地址的差异;对于同一进程,逻辑地址相同,物理地址肯定相同.
现在,我们的程序都是多进程的,逻辑地址相同,对应的物理地址就不一定相同了;也就是说A进程和B进程的逻辑地址相同,就不能说明物理地址一定相同,我们还需要看各自的页表,看看页表是否相同.(页表就是逻辑页和物理页的映射关系);
不同进程的逻辑地址是没有比较的意义的;

9.为什么在程序中不直接使用物理地址呢?

我们无法预知哪些物理地址是空闲的,同时空闲的也是动态变化的,程序在不断的申请释放空间中.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/165754.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Shell判断:流程控制—if(二)

一、多分支结构 1、语法&#xff1a; if 条件测试1 then 命令序列 elif 条件测试2 then 命令序列 elif 条件测试3 then 命令序列.... else 命令序列 fi 2、示例&am…

ERR:Navicat连接Sql Server报错

错误信息&#xff1a;报错&#xff1a;未发现数据源名称并且未指定默认驱动程序。 原因&#xff1a;Navicat没有安装Sqlserver驱动。 解决方案&#xff1a;在Navicat安装目录下找到sqlncli_x64.msi安装即可。 一键安装即可。 Navicat链接SQL Server配置 - MarchXD - 博客园 …

Spring Cloud学习(十)【Elasticsearch搜索功能 分布式搜索引擎02】

文章目录 DSL查询文档DSL查询分类全文检索查询精准查询地理坐标查询组合查询相关性算分Function Score Query复合查询 Boolean Query 搜索结果处理排序分页高亮 RestClient查询文档快速入门match查询精确查询复合查询排序、分页、高亮 黑马旅游案例 DSL查询文档 DSL查询分类 …

K-Means聚类

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 K-means聚类算法实现 技术细节 选取的数据集是sklearn.datasets里面的鸢尾花数据集&#xff0c;方便最后的算法评价。 根据手肘法&#xff08;即根据SSE代价函数&#xff09;得出最合适的k值。 此处思路是先根据E …

C++之常用算法

C之常用算法 for_each transform #include<iostream> using namespace std; #include<vector> #include<algorithm>class Tranfor { public:int operator()(int var){return var;} };class MyPrint { public:void operator()(int var){cout << var&l…

【机器学习】特征工程:特征选择、数据降维、PCA

各位同学好&#xff0c;今天我和大家分享一下python机器学习中的特征选择和数据降维。内容有&#xff1a; &#xff08;1&#xff09;过滤选择&#xff1b;&#xff08;2&#xff09;数据降维PCA&#xff1b;&#xff08;3&#xff09;sklearn实现 那我们开始吧。 一个数据集中…

【Python仿真】基于EKF的传感器融合定位

基于EKF的传感器融合定位&#xff08;Python仿真&#xff09; 简述1. 背景介绍1.1. EKF扩展卡尔曼滤波1.1.1.概念1.1.2. 扩展卡尔曼滤波的主要步骤如下&#xff1a;1.1.3. 优、缺点 1.2. 航位推算1.3. 目前航位算法的使用通常与卡尔曼滤波相结合使用2. 分段代码 2.1. 导入需要的…

Linux操作文件的底层系统调用

目录 1.概述 2.open的介绍 3.write 的介绍 4.read 5.close的介绍 6.文件描述符 1.概述 C语言操作文件的几个库函数:fopen,fread,fwrite,fclose; 系统调用:open,read,write,close; 系统调用方法实现在内核中;(陷入内核,切换到内核) 2.open的介绍 open重载:两个参数用于打…

【0到1学习Unity脚本编程】第一人称视角的角色控制器

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;【0…

【Gradle-13】SNAPSHOT版本检查

1、什么是SNAPSHOT SNAPSHOT版本是指尚未发布的版本&#xff0c;是一个「动态版本」&#xff0c;它始终指向最新的发布工件&#xff08;gav&#xff09;&#xff0c;也就是说同一个SNAPSHOT版本可以反复用来发布。 这种情况在大型app多团队的开发中比较常见&#xff0c;比如us…

ROS参数服务器(Param):通信模型、Hello World与拓展

参数服务器在ROS中主要用于实现不同节点之间的数据共享。 参数服务器相当于是独立于所有节点的一个公共容器&#xff0c;可以将数据存储在该容器中&#xff0c;被不同的节点调用&#xff0c;当然不同的节点也可以往其中存储数据。 使用场景一般存储一些机器人的固有参数&…

系列四、强引用、软引用、弱引用、虚引用分别是什么?

一、整体架构 二、强引用&#xff08;默认支持模式&#xff09; 2.1、概述 当内存不足时&#xff0c;JVM开始垃圾回收&#xff0c;对于强引用的对象&#xff0c;就算是出现了OOM也不会对该对象进行回收&#xff0c;死都不收。 强引用是我们最常见的普通对象引用&#xff0c;只…

Gin框架源码解析

概要 目录 Gin路由详解 Gin框架路由之Radix Tree 一、路由树节点 二、请求方法树 三、路由注册以及匹配 中间件含义 Gin框架中的中间件 主要讲述Gin框架路由和中间件的详细解释。本文章将从Radix树&#xff08;基数树或者压缩前缀树&#xff09;、请求处理、路由方法树…

hypermesh学习总结(一)

1、hypermesh导入导出 2、hypermesh如何使用拓扑命令,连接多个几何体为一个? 3、hypermesh模式选择 分别有显示动力学模式explicit,标准模式Standard3D(静力学及模态等)

Linux之进程概念(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、冯诺依曼体系结构二、操作系统(Operator System)1、概念2、设计OS的目的3、定位4、如何理…

2024年csdn最新最全的Postman接口测试: postman实现参数化

什么时候会用到参数化 比如&#xff1a;一个模块要用多组不同数据进行测试 验证业务的正确性 Login模块&#xff1a;正确的用户名&#xff0c;密码 成功&#xff1b;错误的用户名&#xff0c;正确的密码 失败 postman实现参数化 在实际的接口测试中&#xff0c;部分参数…

弗洛伊德算法(C++)

目录 介绍&#xff1a; 代码&#xff1a; 结果&#xff1a; 介绍&#xff1a; 弗洛伊德算法&#xff08;Floyd algorithm&#xff09;也称为Floyd-Warshall算法&#xff0c;是一种用于求解所有节点对之间的最短路径的动态规划算法。它使用了一个二维数组来存储所有节点…

深入解析具名导入es6规范中的具名导入是在做解构吗

先说答案&#xff0c;不是 尽管es6的具名导入和语法非常相似 es6赋值解构 const obj {a: 1,f() {this.a}}const { a, f } objes6具名导入 //导出文件代码export let a 1export function f() {a}export default {a,f}//导入文件代码import { a, f } from ./tsVolution可以看出…

Unity2021及以上 启动或者禁用自动刷新

Unity 2021以以上启动自动刷新 Edit---> Preferences--> Asset Pipline --> Auto Refresh 禁用的结果 如果不启动自动刷新在Project面板选择Refresh是不会刷新已经修改后的脚本的。

10_6 input输入子系统,流程解析

简单分层 应用层 内核层 --------------------------- input handler 数据处理层 driver/input/evdev.c1.和用户空间交互,实现fops2.不知道数据怎么得到的,但是可以把数据上传给用户--------------------------- input core层1.维护上面和下面的两个链表2.为上下两层提供接口--…
最新文章