T10 数据增强

文章目录

  • 一、准备环境和数据
    • 1.环境
    • 2. 数据
  • 二、数据增强(增加数据集中样本的多样性)
  • 三、将增强后的数据添加到模型中
  • 四、开始训练
  • 五、自定义增强函数
  • 六、一些增强函数

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍦 参考文章:365天深度学习训练营-第10周:数据增强(训练营内部成员可读)
  • 🍖 原作者:K同学啊 | 接辅导、项目定制
  • 🚀 文章来源:K同学的学习圈子

本文说明了两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:
● 将数据增强模块嵌入model中
● 在Dataset数据集中进行数据增强

常用的tf增强函数在文末有说明

一、准备环境和数据

1.环境

import matplotlib.pyplot as plt
import numpy as np
import sys
from datetime import datetime
#隐藏警告
import warnings
warnings.filterwarnings('ignore')

from tensorflow.keras import layers
import tensorflow as tf

print("--------# 使用环境说明---------")
print("Today: ", datetime.today())
print("Python: " + sys.version)
print("Tensorflow: ", tf.__version__)

gpus = tf.config.list_physical_devices("GPU")
if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")
    # 打印显卡信息,确认GPU可用
    print(gpus)
else:
    print("Use CPU")

在这里插入图片描述

2. 数据

使用上一课的数据集,即猫狗识别2的数据集。其次,原数据集中不包括测试集,所以使用tf.data.experimental.cardinality确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。

# 从本地路径读入图像数据
print("--------# 从本地路径读入图像数据---------")
data_dir   = "D:/jupyter notebook/DL-100-days/datasets/Cats&Dogs Data2/"
img_height = 224
img_width  = 224
batch_size = 32

# 划分训练集
print("--------# 划分训练集---------")
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

# 划分验证集
print("--------# 划分验证集---------")
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

# 从验证集中划20%的数据用作测试集
print("--------# 从验证集中划20%的数据用作测试集---------")
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)

print('验证集的批次数: %d' % tf.data.experimental.cardinality(val_ds))
print('测试集的批次数: %d' % tf.data.experimental.cardinality(test_ds))

# 显示数据类别
print("--------# 显示数据类别---------")
class_names = train_ds.class_names
print(class_names)

print("--------# 归一化处理---------")
AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

# 数据可视化
print("--------# 数据可视化---------")
plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

二、数据增强(增加数据集中样本的多样性)

数据增强的常用方法包括(但不限于):随机平移、随机翻转、随机旋转、随机亮度、随机对比度,可以在Tf中文网的experimental/preprocessing类目下查看,也可以在Tf中文网的layers/类目下查看。

本文使用随机翻转随机旋转来进行增强:

tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像

tf.keras.layers.experimental.preprocessing.RandomRotation:随机旋转每个图像

# 第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
print("--------# 数据增强:随机翻转+随机旋转---------")
data_augmentation = tf.keras.Sequential([
  tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
  tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])

# Add the image to a batch.
print("--------# 添加图像到batch中---------")
# Q:这个i从哪来的??????
image = tf.expand_dims(images[i], 0)

print("--------# 显示增强后的图像---------")
plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = data_augmentation(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0])
    plt.axis("off")
--------# 数据增强:随机翻转+随机旋转---------
--------# 添加图像到batch中---------
--------# 显示增强后的图像---------
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.

在这里插入图片描述

三、将增强后的数据添加到模型中

两种方式:

  • (1)将其嵌入model中

优点是:

● 数据增强这块的工作可以得到GPU的加速(如果使用了GPU训练的话)

注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。

'''
model = tf.keras.Sequential([
  data_augmentation,
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
])
'''
"\nmodel = tf.keras.Sequential([\n  data_augmentation,\n  layers.Conv2D(16, 3, padding='same', activation='relu'),\n  layers.MaxPooling2D(),\n])\n"
  • (2)在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds

print("--------# 增强后的图像加到模型中---------")
train_ds = prepare(train_ds)

在这里插入图片描述

四、开始训练

# 设置模型
print("--------# 设置模型---------")
model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])

# 设置编译参数
# ● 损失函数(loss):用于衡量模型在训练期间的准确率。
# ● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
# ● 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
print("--------# 设置编译器参数---------")
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

print("--------# 开始训练---------")
epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

print("--------# 查看训练结果---------")
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

在这里插入图片描述

五、自定义增强函数

print("--------# 自定义增强函数---------")
import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):
    seed = (random.randint(0,9), 0)
    # 随机改变图像对比度
    stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
    return stateless_random_brightness

image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())

plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = aug_img(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0].numpy().astype("uint8"))

    plt.axis("off")
    
# Q: 将自定义增强函数应用到我们数据上呢?
# 请参考上文的 preprocess_image 函数,将 aug_img 函数嵌入到 preprocess_image 函数中,在数据预处理时完成数据增强就OK啦。

在这里插入图片描述
在这里插入图片描述

# 从本地路径读入图像数据
print("--------# 从本地路径读入图像数据---------")
data_dir   = "D:/jupyter notebook/DL-100-days/datasets/Cats&Dogs Data2/"
img_height = 224
img_width  = 224
batch_size = 32

# 划分训练集
print("--------# 划分训练集---------")
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

# 划分验证集
print("--------# 划分验证集---------")
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

# 从验证集中划20%的数据用作测试集
print("--------# 从验证集中划20%的数据用作测试集---------")
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)

print('验证集的批次数: %d' % tf.data.experimental.cardinality(val_ds))
print('测试集的批次数: %d' % tf.data.experimental.cardinality(test_ds))

# 显示数据类别
print("--------# 显示数据类别---------")
class_names = train_ds.class_names
print(class_names)

print("--------# 归一化处理---------")
AUTOTUNE = tf.data.AUTOTUNE

print("--------# 将自定义增强函数应用到数据上---------")
def preprocess_image(aug_img,label):
    return (aug_img/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

# 数据可视化
print("--------# 数据可视化---------")
plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")
        
# 设置模型
print("--------# 设置模型---------")
model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])

# 设置编译参数
# ● 损失函数(loss):用于衡量模型在训练期间的准确率。
# ● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
# ● 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
print("--------# 设置编译器参数---------")
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

print("--------# 开始训练---------")
epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

print("--------# 查看训练结果---------")
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

使用自定义增强函数增强后的数据重新训练的结果:
在这里插入图片描述

六、一些增强函数

在这里插入图片描述
(1)随机亮度(RandomBrightness)

tf.keras.layers.RandomBrightness( factor, value_range=(0, 255), seed=None, **kwargs )

(2)随机对比度(RandomContrast)

tf.keras.layers.RandomContrast( factor, seed=None, **kwargs )

(3)随机裁剪(RandomCrop)

tf.keras.layers.RandomCrop( height, width, seed=None, **kwargs )

(4)随机翻转(RandomFlip)

tf.keras.layers.RandomFlip( mode=HORIZONTAL_AND_VERTICAL, seed=None, **kwargs )
(5)随机高度(RandomHeight)和随机宽度(RandomWidth)

tf.keras.layers.RandomHeight( factor, interpolation='bilinear', seed=None, **kwargs )

tf.keras.layers.RandomWidth( factor, interpolation='bilinear', seed=None, **kwargs )

(6)随机平移(RandomTranslation)

tf.keras.layers.RandomTranslation( height_factor, width_factor, fill_mode='reflect', interpolation='bilinear', seed=None, fill_value=0.0, **kwargs )

(7)随机旋转(RandonRotation)

tf.keras.layers.RandomRotation( factor, fill_mode='reflect', interpolation='bilinear', seed=None, fill_value=0.0, **kwargs )

(8)随机缩放(RandonZoom)

tf.keras.layers.RandomZoom( height_factor, width_factor=None, fill_mode='reflect', interpolation='bilinear', seed=None, fill_value=0.0, **kwargs )

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/166125.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法】滑动窗口题单——2.不定长滑动窗口(求最长/最大)

文章目录 3. 无重复字符的最长子串1493. 删掉一个元素以后全为 1 的最长子数组904. 水果成篮1695. 删除子数组的最大得分2841. 几乎唯一子数组的最大和2024. 考试的最大困扰度1004. 最大连续1的个数 III1438. 绝对差不超过限制的最长连续子数组2401. 最长优雅子数组解法1——维…

[AutoSar]导出task mapping 表到excel

目录 关键词平台说明背景实现方法 关键词 嵌入式、C语言、autosar 平台说明 项目ValueOSautosar OSautosar厂商vector芯片厂商TI编程语言C,C编译器HighTec (GCC) 背景 为了做文档输出,要导出task mapping 到excel。 实现方法 1.按住shift&#xf…

IDEA自动注解设置(中文版)

IDEA自动注解设置 1、添加类自动注释 文件 - 设置 - 编辑器 - 文件和代码模板 - Include - File Header /** *description:TODO *author: ${USER} *create: ${DATE} ${TIME} */2、添加类方法自动注释 文件 - 设置 - 编辑器 - 实时模版 - …

NSS [NCTF 2018]小绿草之最强大脑

NSS [NCTF 2018]小绿草之最强大脑 题目要求我们输入一个位数>21的正数,带入表达式并且计算结果。 查看源码发现hint,有源码泄露。 拿dirsearch扫一下。扫到了一个备份文件。 python dirsearch.py -u http://node4.anna.nssctf.cn:28805/访问/index.…

SpringCloud 微服务全栈体系(十四)

第十一章 分布式搜索引擎 elasticsearch 四、RestAPI ES 官方提供了各种不同语言的客户端,用来操作 ES。这些客户端的本质就是组装 DSL 语句,通过 http 请求发送给 ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/…

H110主板搭配魔改QNCW升级小记

最近搬家完毕,翻出来一块闲置已久的qncw,隐约记得是买的主板套装,现在主板早已不知踪影,剩下孤零零一个CPU,一起翻出来一个G3900T亮机CPU,应该是同时代的产物。 qncw百度上一搜,发现参数还行&am…

iTerm2+oh-my-zsh搭个Mac电脑上好用好看终端

根据苹果网站上介绍,bash是 macOS Mojave 及更早版本中的默认Shell,从 macOS Catalina 开始,zsh(Z shell) 是所有新建用户帐户的默认Shell。 1. 安装Oh my zsh sh -c "$(curl -fsSL https://raw.githubusercontent.com/ohmyzsh/ohmyzs…

代码随想录算法训练营第二十八天| 78 子集 90 子集|| 93 复原IP地址

78 子集 由题意可知数组中的元素互不相同&#xff0c;所以在dfs中我们可以将当前的path直接加入到res中。 class Solution {List<List<Integer>>res new ArrayList<>();List<Integer>path new LinkedList<>();public List<List<Integer…

计算机网络的标准化工作及相关组织

一、国际化组织 计算机网络的标准化工作由一些主要的组织来进行管理和推动。以下是几个主要的计算机网络标准化的国际组织及其相关的标准&#xff1a; 1. 国际标准化组织&#xff08;ISO&#xff09;&#xff1a;国际标准化组织负责制定各种行业的标准&#xff0c;包括计算机…

【Kingbase FlySync】命令模式:部署双轨并行,并实现切换同步

【Kingbase FlySync】命令模式:安装部署同步软件&#xff0c;实现Oracle到KES实现同步 双轨并行方案说明一.准备工作二.环境说明三.目标实操(1).准备安装环境Orcle服务器(Oracle40)1.上传所有工具包2.操作系统配置a.增加flysync 用户、设置密码b.配置环境变量c.调整limits.conf…

Django+Vue项目创建 跑通

参考链接&#xff1a; 【精选】DjangoVue项目构建_django vue-CSDN博客 一、背景 主要介绍如何使用后端Django 前端Vue 的技术栈快速地搭建起一套web项目的框架。 为什么使用Django和Vue? Django是Python体系下最成熟的web框架之一&#xff0c;由于Python语言的易用…

GIT无效的源路径/URL

ssh-add /Users/haijunyan/.ssh/id_rsa ssh-add -K /Users/haijunyan/.ssh/id_rsa

nodejs+vue实验室上机管理系统的设计与实现-微信小程序-安卓-python-PHP-计算机毕业设计

用户&#xff1a;管理员、教师、学生 基础功能&#xff1a;管理课表、管理机房情况、预约机房预约&#xff1b;权限不同&#xff0c;预约类型不同&#xff0c;教师可选课堂预约和个人&#xff1b;课堂预约。 在实验室上机前&#xff0c;实验室管理员需要对教务处发来的上机课表…

交易机器人-微信群通知

微信公众号:大数据高性能计算 1 背景 背景是基于人工去做交易本身无法做到24小时无时无刻的交易,主要是虚拟币本身它是24小时交易,人无法做到24小时盯盘,其次就是如果你希望通过配置更加复杂的规则甚至需要爬取最新的信息走模型进行量化交易的时候,就需要自己去做一些量化…

云原生专栏丨基于服务网格的企业级灰度发布技术

灰度发布&#xff08;又名金丝雀发布&#xff09;是指在黑与白之间&#xff0c;能够平滑过渡的一种发布方式。在其上可以进行A/B testing&#xff0c;即让一部分用户继续用产品特性A&#xff0c;一部分用户开始用产品特性B&#xff0c;如果用户对B没有什么反对意见&#xff0c;…

Linux调试器---gdb的使用

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、gdb的背景 gdb&#xff0c;全称为GNU调试器&#xff08;GNU Debugger&#xff09;&#xff0c;是一个功能强大的源代码级调试工具&#xff0c;主要…

Spring 配置

配置文件最主要的目的 : 解决硬编码的问题(代码写死) SpringBoot 的配置文件,有三种格式 1.properties 2.yaml 3.yml(是 yaml 的简写) SpringBoot 只支持三个文件 1.application.properties 2.application.yaml 3.application.yml yaml 和 yml 是一样的,学会一个就行…

【Linux】冯诺依曼体系结构、操作系统、进程概念、进程状态、环境变量、进程地址空间

目录 一、冯诺依曼体系结构二、操作系统(OS)1. 操作系统是什么2. 操作系统如何做管理3. 系统调用和库函数概念 三、进程1. 进程是什么&#xff1f;2. 描述进程-PCB3. 查看进程的方法 四、进程状态1 运行、阻塞和挂起状态2 Linux中的进程状态 五、进程优先级1. 什么是优先级2.查…

深度学习中的图像融合:图像融合论文阅读与实战

个人博客:Sekyoro的博客小屋 个人网站:Proanimer的个人网站 abs 介绍图像融合概念&#xff0c;回顾sota模型&#xff0c;其中包括数字摄像图像融合&#xff0c;多模态图像融合&#xff0c; 接着评估一些代表方法 介绍一些常见应用&#xff0c;比如RGBT目标跟踪&#xff0c;…

全新云开发工具箱:融合多项功能的微信小程序源码解决方案

全新云开发工具箱&#xff1a;融合多项功能的微信小程序源码解决方案 这款微信小程序源码提供了超过40个功能&#xff0c;集合了各种实用工具&#xff0c;成为一款全能工具箱。这些功能包括证件照制作、垃圾分类查询、个性签名制作、二维码生成、文字九宫格、手持弹幕、照片压…
最新文章