图神经网络:消息传递算法

一、说明

        图网络-GNN(Graph Neural Networks)是近几年研究的主题之一,虽不及深度神经网络那么火爆,但在一些领域,如分子化学方面是不得不依赖的理论。本文就一些典型意义的图神经网络消息传递展开阐述。

二、图网络简述

        图神经网络是一种用于以图形式呈现的数据的神经网络。图形是由顶点(节点)和边组成的空间结构。有许多结构表示为图形:三维空间(x,y,z)中的结构,如物质分子(例如咖啡因)、蛋白质(由氨基酸组成)、DNA、计算机网络以及社交网络等结构。以下是一些使用 Wolfram Mathematica 制作的例子:

        咖啡因的分子结构

        蛋白

        蛋白质中原子的 XYZ 坐标

社交网络

        社交网络社区

        基本上,每个节点代表一个人、一个原子、一个金融交易,这些节点通过边连接,在这些实体之间建立关系。在人与人之间,这可能是领带的强度、社交距离、亲密程度。在分子结构中的原子中,这些边缘可能是共价键。在金融交易中,这些边缘可以定义某人与欺诈交易的距离。

        考虑到社交网络的例子(如上图),我们有密集连接的人集群,可能与“影响者”有关,也有薄弱环节(弱纽带),它们连接不同的人群,允许信息的多样性。当我们亲自或通过社交媒体相互交谈时,我们的信息会通过这个社交网络传播,并且可能会受到其内容的变形和误解的影响。原子及其电磁特性也会发生同样的情况:其他原子离得越近,它们受这些电磁特性的影响就越大。因此,经过一段距离后,这种影响会逐渐消失。此外,如果允许这种影响渗透到所有网络结构中,则由于饱和,整个网络可能会收敛到单一状态。

三、图网络的向量模型

        但是,我们如何才能用数学方式来表示这些复杂的关系,以便能够对这些相互作用进行建模呢?首先,我们应该定义每个参与者之间的联系。这是通过邻接矩阵完成的,其中相同的个体被放置在该矩阵的行和列中:

        基于邻接矩阵的网络结构

        此邻接矩阵中的每个数字 1 都表示一个连接。我们有一个 5 x 5 矩阵,其中节点 1 到 5 分别放置在线和列中。所以,如果你拿个体 2,他只与个体 5 相连。个体 1 连接到个体 3 和 5,依此类推。为了绘制这个网络,我使用了以下代码:

import numpy as np
import networkx as nx

Adj = np.array(
    [[0, 0, 1, 0, 1],
     [0, 0, 0, 0, 1], 
     [0, 0, 0, 1, 1], 
     [0, 0, 1, 0, 1], 
     [1, 1, 0, 0, 0]]
)
g = nx.from_numpy_array(Adj)
pos = nx.circular_layout(g)

fig, ax = plt.subplots(figsize=(8,8))
nx.draw(g, pos, with_labels=True, 
    labels={i: i+1 for i in range(g.number_of_nodes())}, node_color='#f78c31', 
    ax=ax, edge_color='gray', node_size=1000, font_size=20, font_family='DejaVu Sans')

        现在我们将邻接矩阵乘以由行数组成的向量。因此,我们将得到一个 5 x 5 矩阵乘以 5 x 1 向量。这意味着 n x p 乘以 p x m 将得到一个 n x m 向量。在本例中,5 x 1 向量:

H = Adj @ np.array([1,2,3,4,5]).reshape(-1,1)

        请注意,为了进行此乘法,您需要将 p x m 向量转置为 [1,2,3,4,5],并逐个元素乘以邻接矩阵和总和的那行的每个元素。结果是相连邻域的总和。按住 一会儿。 

        现在我们将找到对角线度矩阵,它由对角线中的邻域大小组成,即矩阵中每一列的总和:

D = np.zeros(Adj.shape)
np.fill_diagonal(D, Adj.sum(axis=0))

对角线度矩阵

现在,我们将为每个边分配一个权重。我们通过将恒等矩阵除以对角度矩阵来做到这一点。

D_inv = np.linalg.inv(D)

倒置度矩阵

通过将倒置的 D 乘以邻接矩阵,我们将得到一个平均的邻接矩阵

        平均邻接矩阵

        当我们处理一个没有单个值的节点,而是特征向量的集合时,平均的概念非常重要,就像图卷积网络一样。

        但是,我们真正想要操作的是消息传递算法,如下所示:

        反复应用的帽子将允许信息在图网络中流动。假设波浪号等于邻接矩阵加单位矩阵,我们有:

g = nx.from_numpy_array(Adj)
Adj_tilde = Adj + np.eye(g.number_of_nodes())

        现在我们需要创建 D 波浪号的平方根。我们创建一个零矩阵,并将邻接矩阵波浪号的线和值相加。

D_tilde = np.zeros_like(A_tilde)
np.fill_diagonal(D_tilde, A_tilde.sum(axis=1).flatten())

        然后我们计算 D 波浪号的平方反比根:

D_tilde_invroot = np.linalg.inv(sqrtm(D_tilde))

        现在我们已经有了 A 波浪号,以及 D 波浪号的平方反比根,我们可以计算出 A 帽子:

A-hat(帽子)的程序表示:

A_hat = D_tilde_invroot @ A_tilde @ D_tilde_invroot

        请注意,numpy 中的 @ 与 matmul 的意思相同。

A-hat 帽子的结果

        现在我们将实现消息传递算法。让我们从我们拥有的消息向量 (H) 开始,检查它在图网络中的流动方式。我们知道:

H = Adj @ np.array([1,2,3,4,5]).reshape(-1,1)

        现在我们让信息流在图网络中:

epochs = 9
information = [H.flatten()]
for i in range(epochs):
    H = A_hat @ H
    information.append(H.flatten())

四、图神经网的可视化 

        让我们看看这个热图中的信息流。注意每个个体(x 轴)如何随时间(y 轴)获取或丢失信息。

import matplotlib.pyplot as plt

plt.imshow(information, cmap='Reds', interpolation='nearest')
plt.show()

        让我们把它画出来:

fig, ax = plt.subplots(figsize=(12, 12))
from time import time

for i in range(0,len(information)):
    colors = information[i]
    
    nx.draw(
    g, pos, with_labels=True, 
    labels=node_labels, 
    node_color=colors*2, 
    ax=ax, edge_color='gray', node_size=1500, font_size=30, font_family='serif',
    vmin= np.array(information).min(), vmax=np.array(information).max())
    plt.title("Epoch={}".format(i))
    plt.savefig('/home/user/Downloads/message/foo{}.png'.format(time()), bbox_inches='tight', transparent=True)

import glob
from PIL import Image

fp_in = "/home/user/Downloads/message/foo*.png"
fp_out = "/home/user/Downloads/message100_try.gif"

img, *imgs = [Image.open(f) for f in sorted(glob.glob(fp_in))]
img.save(fp=fp_out, format='GIF', append_images=imgs,
         save_all=True, duration=1200, loop=0)

        从视觉上看,图网络中的信息流在每个时期都如下所示:

        在下图中,我们可以看到网络的每个节点随时间推移有多少信息。请注意节点 1、3、4 和 5 的收敛:

        有关消息传递算法在基于代理的模型中的实际应用,请参阅我在 COMSES 上使用 Python 和 NetLogo 制作的模型:鲁本斯·津布雷斯

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/167301.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode:689. 三个无重叠子数组的最大和 | 序列dp+前缀和】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

Django 入门学习总结2

通过学习,我们可以实现一个简单的投票系统。这个投票系统有两部分组成。 公共部分,公众可以查看和进行投票。管理员可以进行增加、删除、修改投票信息。 这里投票系统Python语言版本为3.10.13,Django Web框架版本为4.2.7。 投票系统的实现…

浪涌防护器件要选对,布局布线更重要!|深圳比创达电子EMC(下)

浪涌测试,作为最常见的EMC抗干扰测试项目之一,基本上是家用消费电子必测的项目;其测试目的是为了验证产品在承受外部的浪涌冲击时能否正常工作。 一、比创达整改案例 1) 背景: 某智能插座产品在浪涌测试,需要过2kV差…

分布式与微服务 —— 初始

前言 距今微服务的提出已经过去快十个春秋,网络上的博文讲微服务也是一抓一大把,但是荔枝仍然觉得还是有必要自己梳理一下整个知识体系。在这篇文章中,荔枝将会以一个初学者的角度来切入,从分布式系统和微服务架构引入&#xff0c…

NTLM 认证支持的添加与实现

我在psf/requests项目中报告了bug #932,并提出了一个关于支持HTTP NTLM认证的问题。这篇文章将详细介绍问题背景和解决方案。 HTTP NTLM认证是一种用于验证用户身份的协议。在某些场景下,用户可能需要使用NTLM认证才能访问某些网站或资源。然而&#xff…

2023年中国农业机器人行业市场规模及发展趋势分析[图]

农业机器人是一种机器,是机器人在农业生产中的运用,是一种可由不同程序软件控制,以适应各种作业,能感觉并适应作物种类或环境变化,有检测(如视觉等)和演算等人工智能的新一代无人自动操作机械。 农业机器人分类 资料来源&#xf…

基于纹理特征的kmeas聚类的图像分割方案

Gabor滤波器简介 在图像处理中,以Dennis Gabor命名的Gabor滤波器是一种用于纹理分析的线性滤波器,本质上是指在分析点或分析区域周围的局部区域内,分析图像中是否存在特定方向的特定频率内容。Gabor滤波器的频率和方向表示被许多当代视觉科学…

亚马逊云科技帮助客户在云中构建具有高可靠性和韧性的应用程序

在一个理想的世界里,一切都非常完美,并且一直都在顺畅运作。早晨的通勤没有交通堵塞,最喜欢的停车位一直空着,一杯温度适宜的饮料,生活一帆风顺,没有任何中断。在需要时,您能得到所需的东西。但…

LeetCode207.课程表

看完题我就想,这不就是进程里面的死锁问题嘛,进程1等进程2释放锁,进程2等进程3释放锁,进程3等进程1释放锁,这就造成了死锁。或者是spring中的循环依赖问题,BeanA的初始化需要初始化一个BeanB,Be…

释放固态继电器的力量:主要优势和应用

固态继电器(SolidStateRelay,缩写SSR),是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。用隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,达到直接…

软件项目可行性研究报告

一、可行性研究报告 1.1编写目的 1.2项目背景 1.3定义 1.4参考资料 2.可行性研究的前提 2.1要求 2.2目标 2.3条件、假定和限制 2.4可行性研究方法 2.5决定可行性的主要因素 3.对现有系统的分析 3.1处理流程和数据流程 3.2工作负荷 3.3费用…

俄罗斯操作系统Aurora OS 5.0全新UI亮相

俄罗斯媒体 IXBT 报道称,该地本土企业 Открытая мобильная платформа 于 2023 年 11 月 9 日至 10 日在圣彼得堡举行的 Mobius 2023 年秋季移动开发者专业会议上,展示了 Aurora OS 5.0 的界面和其他细节。 据介绍,…

美团外卖9元每周星期一开工外卖红包优惠券怎么领取?

美团外卖9元周一开工红包活动时间是什么时候? 美团外卖9元周一开工红包优惠券是指每周星期一可以领取的美团外卖红包优惠券,在美团外卖周一开工红包领取活动时间内可领取到9元周一开工美团外卖红包优惠券;(温馨提醒:如…

git 提交成了LFS格式,如何恢复

平常习惯使用sourceTree提交代码,某次打开时弹出了一个【是否要使用LFS提交】的确认弹窗,当时不知道LFS是什么就点了确认,后续提交时代码全变成了这个样子 因为是初始化的项目首次提交,将近四百个文件全被格式化成了这个样子&…

UASRT(2)

UASRT参数配置 数据发送过程 1.双缓冲 当要发送三个数据 且是连续发送 第一个数据写入TDR寄存器 然后到移位寄存器发送(一个一个bit的发送)在第一个数据在移位寄存器发送的时候第二个数据就已经被写入TDR寄存器了等到第一个数据发送完第二个数据就进入…

2023年中国位置服务(LBS)产业链及市场规模分析[图]

卫星导航系统的高技术、高成本、高效益属性使其成为国家经济实力与科技实力的标志之一。卫星导航系统由空间段、地面段和用户段三个部分组成,已广泛用于交通运输、农林牧渔、航空航海等领域,服务载体包括手机、汽车、无人机、导弹等,对人们生…

Docker基础知识总结

文章目录 1.Docker介绍2.Docker版本3.为什么要使用Docker4.Docker基础组件4.1 镜像(Images)4.2 容器(Container)和仓库(Repository) 5.Docker安装6.Docker run7.Dockerfile8.Docker commit9.镜像发布到镜像…

深度学习之基于CT影像图像分割检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 基于CT影像的图像分割检测系统可以被设计成能够自动地检测出CT图像中的病变部位或解剖结构,以协助医生进…

[一周AI简讯]OpenAI宫斗;微软Bing Chat更名Copilot;Youtube测试音乐AI

OpenAI宫斗,奥特曼被解雇,董事会内讧 Sam Altman被解雇,不再担任CEO,董事会的理由是奥特曼在与董事会的沟通中始终不坦诚,阻碍了董事会履行职责的能力。原首席技术官Mira Murati担任新CEO。OpenAI宫斗剧远未结束&…

Python的requests库:解决文档缺失问题的策略与实践

在Python的requests库中,有一个名为ALL_PROXY的参数,但是该参数的文档并未进行详细的描述。这使得用户在使用该参数时可能会遇到一些问题,例如不知道如何正确地配置和使用该参数。 解决方案 针对这个问题,我们可以采取以下几种解…
最新文章