YOLOv5改进 | 添加SE注意力机制 + 更换NMS之EIoU-NMS

前言:Hello大家好,我是小哥谈。为提高算法模型在不同环境下的目标识别准确率,提出一种基于改进 YOLOv5 深度学习的识别方法(SE-NMS-YOLOv5),该方法融合SE(Squeeze-and-Excitation)注意力机制模块和改进非极大值抑制对数据集进行训练和测试。研究表明,SE-NMS-YOLOv5 目标识别方法有效地解决了不同场景下的检测准确率低的问题,提升了检测和识别的整体效果。🌈 

     目录

🚀1.基础概念

🚀2.添加位置

🚀3.添加步骤

🚀4.改进方法

💥💥步骤1:common.py文件修改

💥💥步骤2:yolo.py文件修改

💥💥步骤3:创建自定义yaml文件

💥💥步骤4:修改自定义yaml文件

💥💥步骤5:验证是否加入成功

💥💥步骤6:更改NMS

💥💥步骤7:修改默认参数

🚀1.基础概念

SE注意力机制:

SENet是由Momenta和牛津大学的胡杰等人提出的一种新的网络结构,目标是通过显式的建模卷积特征通道之间的相互依赖关系来提高网络的表示能力。在2017年最后一届ImageNet 比赛classification任务上获得第一名。SENet网络的创新点在于关注channel之间的关系,希望模型可以自动学习到不同channel特征的重要程度。为此,SENet提出了Squeeze-and-Excitation (SE)模块

SE模块首先对卷积得到的特征图进行Squeeze操作,得到channel级的全局特征,然后对全局特征进行Excitation操作,学习各个channel间的关系,也得到不同channel的权重,最后乘以原来的特征图得到最终特征。本质上,SE模块是在channel维度上做attention或者gating操作,这种注意力机制让模型可以更加关注信息量最大的channel特征,而抑制那些不重要的channel特征。另外一点是SE模块是通用的,这意味着其可以嵌入到现有的网络架构中。

SENet结构图如下图所示:

🍀步骤1:squeeze操作,将各通道的全局空间特征作为该通道的表示,形成一个通道描述符;

🍀步骤2:excitation操作,学习对各通道的依赖程度,并根据依赖程度的不同对特征图进行调整,调整后的特征图就是SE block的输出。

EIoU-NMS:

EIoU-NMS是一种新的非极大值抑制算法,它是YOLOv5中提出的一种改进算法。EIoU-NMS是在DIoU-NMS的基础上进行改进的。EIoU-NMS的主要思想是将检测框之间的距离嵌入到嵌入空间中,然后计算嵌入空间中的距离来代替传统的IoU计算。这种方法可以更好地处理检测框之间的重叠情况,从而提高目标检测的准确性。


🚀2.添加位置

本文的改进是基于YOLOv5-6.0版本,关于其网络结构具体如下图所示:

为了使网络能够更好地拟合通道之间的相关性,增加更重要的通道特征的权重,引入了SE模块,注意力机制是一种神经网络资源分配方案,用于将计算资源分配给更重要的任务,

本文的改进是将SE注意力机制添加在主干网络中,具体添加位置如下图所示:

关于NMS的改进,直接体现在代码中,所以,本节课改进后的网络结构图具体如下图所示:


🚀3.添加步骤

针对本文的改进,具体步骤如下所示:👇

步骤1:common.py文件修改

步骤2:yolo.py文件修改

步骤3:创建自定义yaml文件

步骤4:修改自定义yaml文件

步骤5:验证是否加入成功

步骤6:更改NMS

步骤7:修改默认参数


🚀4.改进方法

💥💥步骤1:common.py文件修改

common.py中添加SE注意力机制模块,所要添加模块的代码如下所示,将其复制粘贴到common.py文件末尾的位置。

SE注意力机制模块代码:

# SE
class SE(nn.Module):
    def __init__(self, c1, c2, ratio=16):
        super(SE, self).__init__()
        #c*1*1
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.l1 = nn.Linear(c1, c1 // ratio, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.l2 = nn.Linear(c1 // ratio, c1, bias=False)
        self.sig = nn.Sigmoid()
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avgpool(x).view(b, c)
        y = self.l1(y)
        y = self.relu(y)
        y = self.l2(y)
        y = self.sig(y)
        y = y.view(b, c, 1, 1)
        return x * y.expand_as(x)

💥💥步骤2:yolo.py文件修改

首先在yolo.py文件中找到parse_model函数这一行,加入SE。具体如下图所示:

💥💥步骤3:创建自定义yaml文件

models文件夹中复制yolov5s.yaml,粘贴并重命名为yolov5s_SE_ENMS.yaml具体如下图所示:

💥💥步骤4:修改自定义yaml文件

本步骤是修改yolov5s_SE_ENMS.yaml,根据改进后的网络结构图进行修改。

由下面这张图可知,当添加SE注意力机制之后,后面的层数会发生相应的变化,需要修改相关参数。

备注:层数从0开始计算,比如第0层、第1层、第2层......🍉 🍓 🍑 🍈 🍌 🍐  

综上所述,修改后的完整yaml文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SE, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

💥💥步骤5:验证是否加入成功

yolo.py文件里,将配置改为我们刚才自定义的yolov5s_SE_ENMS.yaml

修改1,位置位于yolo.py文件165行左右,具体如图所示:

修改2,位置位于yolo.py文件363行左右,具体如下图所示:

配置完毕之后,点击“运行”,结果如下图所示:

由运行结果可知,与我们前面更改后的网络结构图相一致,证明添加成功了!✅

💥💥步骤6:更改NMS

本文需要更改NMS为EIoU-NMS

将下面非极大值抑制NMS核心代码复制粘贴到 utils / general.py 的末尾位置。当复制粘贴后,会有报错提示,具体如下图所示:

# NMS实现代码
def NMS(boxes, scores, iou_thres, GIoU=False, DIoU=True, CIoU=False, EIoU=False, SIoU=False):
    B = torch.argsort(scores, dim=-1, descending=True)
    keep = []
    while B.numel() > 0:
        index = B[0]
        keep.append(index)
        if B.numel() == 1: break
        iou = bbox_iou(boxes[index, :], boxes[B[1:], :], GIoU=GIoU, DIoU=DIoU, CIoU=CIoU, EIoU=EIoU, SIoU=SIoU)
        inds = torch.nonzero(iou <= iou_thres).reshape(-1)
        B = B[inds + 1]
    return torch.tensor(keep)
 
 
def soft_nms(bboxes, scores, iou_thresh=0.5, sigma=0.5, score_threshold=0.25):
    order = scores.argsort(descending=True).to(bboxes.device)
    keep = []
    while order.numel() > 1:
        if order.numel() == 1:
            keep.append(order[0])
            break
        else:
            i = order[0]
            keep.append(i)
        iou = bbox_iou(bboxes[i], bboxes[order[1:]]).squeeze()
        idx = (iou > iou_thresh).nonzero().squeeze()
        if idx.numel() > 0:
            iou = iou[idx]
            new_scores = torch.exp(-torch.pow(iou, 2) / sigma)
            scores[order[idx + 1]] *= new_scores
        new_order = (scores[order[1:]] > score_threshold).nonzero().squeeze()
        if new_order.numel() == 0:
            break
        else:
            max_score_index = torch.argmax(scores[order[new_order + 1]])
            if max_score_index != 0:
                new_order[[0, max_score_index],] = new_order[[max_score_index, 0],]
            order = order[new_order + 1]
    return torch.LongTensor(keep)
 

然后,解决报错提示,需要导入下列代码:

from utils.metrics import box_iou, fitness, bbox_iou

最后,在utils / general.py中找到non_max_suppression函数(大约885行左右),将non_max_suppression函数中的代码:

替换为:

 i = NMS(boxes, scores, iou_thres, class_nms='EIoU')

💥💥步骤7:修改默认参数

train.py文件中找到parse_opt函数,然后将第二行 '--cfg的default改为 'models/yolov5s_SE_ENMS.yaml',然后就可以开始进行训练了。🎈🎈🎈 

结束语:关于更多YOLOv5学习知识,可参考专栏:《YOLOv5:从入门到实战》🍉 🍓 🍑 🍈 🍌 🍐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/189817.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

13年老鸟总结,性能测试方法汇总+性能响应很慢排查方法(详全)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、性能测试包含哪…

CSS水平居中与垂直居中的方法

当我们页面布局的时候&#xff0c;通常需要把某一个元素居中&#xff0c;这一篇文章为大家介绍一下居中的几种方法&#xff0c;本人文笔有限&#xff0c;请见谅&#xff01; 一.水平居中 行内元素水平居中的方法&#xff0c;我们使用text-align:center; <!DOCTYPE html&g…

[计算机网络]运输层概述

虽然我自己也不知道写在前面和前言有什么区别..... 这个系列其实是针对<深入浅出计算机网络>的简单总结,加入了一点个人的理解和浅薄见识,如果您有一些更好的意见和见解,欢迎随时协助我改正,感激不尽啦. 最近心态平和了不少, 和过去也完全做了个割舍吧,既然痛苦和压力的…

透过对话聊天聊网络tcp三次握手四次挥手

序 说起来网络&#xff0c;就让我想起的就是一张图。我在网上可以为所欲为&#xff0c;反正你又不能顺着网线来打我。接下来我们来详细说一下网络到底是怎么连接的。 TCP三次打招呼 首先我会用男女生之间的聊天方式&#xff0c;来举一个例子。 从tcp三次握手来说&#xff0c;…

探索 Rollup:简化你的前端构建流程

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

PyInstaller打包python程序为exe可执行文件

教程千千万&#xff0c;貌似我的window电脑就是打包不了&#xff0c;而且不同电脑的表现都不一致&#xff0c;很是奇怪。 文章目录 1 极简版1.1 生成文件spec详解1.2 是否变成一个exe主文件 2 虚拟环境打包3 其他打包需求3.1 加密打包3.2 Pyinstaller打包多个py文件为一个exe文…

python树长子兄弟链存储结构(孩子兄弟链存储结构)

长子兄弟链存储结构&#xff08;孩子兄弟链存储结构&#xff09;解释&#xff1a; 长子兄弟链存储结构是一种树的存储结构&#xff0c;它使用孩子兄弟表示法&#xff08;也称作左孩子右兄弟表示法&#xff09;来表示树的结构。这种表示方法主要用于存储一般的树&#xff0c;而不…

【华为OD】B\C卷真题:100%通过:找城市 C/C++实现

【华为OD】B\C卷真题&#xff1a;100%通过&#xff1a;找城市 C/C实现 题目描述&#xff1a; 一张地图上有n个城市&#xff0c;城市和城市之间有且只有一条道路相连&#xff1a;要么直接相连&#xff0c;要么通过其它城市中转相连&#xff08;可中转一次或多次&#xff09;。…

智能优化算法应用:基于麻雀算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于麻雀算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于麻雀算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.麻雀算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

Typescript基础面试题 | 01.精选 ts 面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

摄像馆服务预约管理系统会员小程序作用是什么

摄像馆不少人并不会经常去&#xff0c;除了有拍婚纱照或工作照等&#xff0c;一般很少会进店&#xff0c;但由于摄像涵盖多个服务项目&#xff0c;因此总体来讲&#xff0c;市场需求度还是比较高的&#xff0c;一个城市也有多个品牌&#xff0c;而传统门店经营也面临不少痛点。…

stm32 42步进电机 上位机示例

脉冲到底是个啥东西&#xff1f;步进电机一直说发脉冲 步进电机通过接收脉冲信号来实现精确的位置控制。脉冲是一种短暂的电信号&#xff0c;它的变化可以触发步进电机转动一定的角度或步进。步进电机控制系统会根据输入的脉冲信号来精确定位和控制步进电机的转动&#xff0c;每…

Datax安装部署及读取MYSQL写入HDFS

一.DataX简介 1.DataX概述 DataX 是阿里巴巴开源的一个异构数据源离线同步工具&#xff0c;致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。 源码地址&#xff1a;https://github.com/alibaba/Data…

⑩【Redis Java客户端】:Jedis、SpringDataRedis、StringRedisTemplate

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ Jedis、SpringDataRedis、StringRedisTemplate…

数据结构——线性表

目录 1.线性表的定义 2.顺序表 2.1顺序表的定义 2.2 顺序表的应用 2.2.1 顺序表的管理 &#xff08;1&#xff09; 顺序表的初始化 &#xff08;2&#xff09; 销毁顺序表 &#xff08;3&#xff09; 打印顺序表的值 &#xff08;4&#xff09;检查顺序表的容量 &…

C#文件操作File类vsFileInfo类和Directory类vsDirectoryInfo类

目录 一、File类vsFileInfo类 1.File类 &#xff08;1&#xff09;示例源码 &#xff08;2&#xff09;生成效果 2.FileInfo类 &#xff08;1&#xff09;示例源码 &#xff08;2&#xff09;生成效果 二、 Directory类vsDirectoryInfo类 1.Directory类 &#xff08;…

C语言基础介绍

1. C语言基础知识 C语言是一种计算机编程语言&#xff0c;是一门用于编写系统软件和应用软件的高级语言。C语言的基础知识包括&#xff1a; 数据类型&#xff1a;C语言中的数据类型包括整型、浮点型、字符型等。 变量&#xff1a;C语言中使用变量来存储数据&#xff0c;变量必…

量化交易:因子风险暴露

本文介绍了如何计算因子风险暴露的内容。 判断风险暴露的建模是否合理 通常&#xff0c;此分析是基于历史数据&#xff0c;而对历史风险暴露的估计可能会影响未来的风险暴露。 因此&#xff0c;计算因子风险暴露是不够的。 必须对风险暴露保持信心&#xff0c;并明白对风险暴…

Vue框架学习笔记——键盘事件

文章目录 前文提要键盘事件&#xff08;并不是所有按键都能绑定键盘事件&#xff09;常用的按键不同的tab和四个按键keyCode绑定键盘事件&#xff08;不推荐&#xff09;Vue.config.keyCode.自定义键名 键码 神奇的猜想div标签和click.enterbutton标签和click.enter 前文提要 …

定长子网划分和变长子网划分问题_二叉树解法_通俗易懂_配考研真题

引入:定长子网划分和变长子网划分的基本概念 定长子网划分和变长子网划分的基本概念 目前常用的子网划分&#xff0c;是基于CIDR的子网划分&#xff0c;也就是将给定的CIDR地址块划分为若干个较小的CIDR地址块。 定长子网划分: 使用同一个子网掩码来划分子网&#xff0c;因…
最新文章