从C语言到C++⑨(第三章_CC++内存管理)详解new和delete+面试题笔试题

目录

1. C语言动态内存管理

1.1 C/C++内存分布

1.2 C语言中动态内存管理的方式

2. C++动态内存管理方式

2.1 new/delete操作内置类型

2.2 初始化new数组的问题

2.3 new 和 delete 操作自定义类型

3. operator new与operator delete函数详解

3.1 operator new与operator delete函数

3.2  重载operator new 与 operator delete(了解)

4. new 和 delete 的实现原理

4.1 对于内置类型

4.2 对于自定义类型

5. 定位new(了解)

5.1 定位new表达式(placement-new)

5.2 定位new的使用场景

6. 常见面试题

6.1 malloc/free和new/delete的区别

7. 笔试选择题

7.1 下面有关c++内存分配堆栈说法错误的是( )

7.2 C++中关于堆和栈的说法,哪个是错误的:( )

7.3 c++中,类ClassA的构造函数和析构函数的执行次数分别为( )

7.4 函数参数使用的空间是在()中申请的,malloc或new是在()中申请空间的?()

7.5 下面有关malloc和new,说法错误的是? ( )

7.6 设已经有A,B,C,D4个类的定义,程序中A,B,C,D析构函数调用顺序为? ( )

7.7 使用 char* p = new char[100]申请一段内存,然后使用delete p释放,有什么问题?( )

7.8 以下代码中,A 的构造函数和析构函数分别执行了几次: ( )

7.9 变量所在哪个内存区域以及变量所占空间大小是多少?

答案:

本章完。


1. C语言动态内存管理

1.1 C/C++内存分布

C/C++内存分布都是一样的。看看我们掌握了多少:

 栈区(stack)

栈又叫堆栈,非静态局部变量/函数参数/返回值等等,栈是向下增长的。

执行函数时,函数内部局部变量的存储单元都可以在栈上创建。

函数执行结束后这些存储单元会被自动释放。栈内存分配运算内置于处理器的指令集中,

拥有很高的效率,但是分配的内存容量是有限的。

栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。

堆区(heap)

堆用于程序运行时动态内存分配,堆是可以上增长的。

一般由程序员自主分配释放,若程序员不主动不释放,程序结束时可能由操作系统回收。

其分配方式类似于链表。

数据段(data segment)

静态存储区,数据段存放全局变量和静态数据,程序结束后由系统释放。

代码段(code segment)

可执行的代码 / 只读常量。代码段存放类成员函数和全局函数的二进制代码。

一个程序起来之后,会把它的空间进行划分,而划分是为了更好地管理。

函数调用,函数里可能会有很多变量,函数调用建立栈帧,栈帧里存形参、局部变量等等。

内存映射段(memory mapping)(了解)

内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。

用户可使用系统接口创建共享共享内存,做进程间通信。

结合以前的知识观察下面一段代码,并回答问题:

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1, 2, 3, 4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) * 4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
	free(ptr1);
	free(ptr3);
}
1. 选择题:
  选项 : A .   B .   C . 数据段 ( 静态区 )   D . 代码段 ( 常量区 )
  globalVar 在哪里? ____   staticGlobalVar 在哪里? ____
  staticVar 在哪里? ____   localVar 在哪里? ____
  num1 在哪里? ____
  char2 在哪里? ____   * char2 在哪里? ___
  pChar3 在哪里? ____       * pChar3 在哪里? ____
  ptr1 在哪里? ____         * ptr1 在哪里? ____

2. 填空题:
    sizeof(num1) = ____;
    sizeof(char2) = ____;    strlen(char2) = ____;
    sizeof(pChar3) = ____;   strlen(pChar3) = ____;
    sizeof(ptr1) = ____;

答案解析:

 

1.2 C语言中动态内存管理的方式

面试题1:malloc / calloc / realloc 的区别?

这三个函数我们以前学C语言已经学过了:

C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_GR C的博客-CSDN博客

相同点
1.都是从堆上申请空间
2.都需要对返回值判空
3.都需要用户free释放
4.返回值类型相同(void*)
5.都需要类型转化
6.底层实现上是一样的,都需要开辟多余的空间,用来维护申请的空间

不同点:
1.函数名字不同和参数类型不同。
2.calloc会对申请空间初始化,并且初始化为0,而其他两个不会。
3.malloc申请的空间必须使用memset初始化
4.realloc是对已经存在的空间进行调整,当第一个参数传入NULL的时候和malloc一样
调整分为两种情况:

① 调整的空间比原有空间大:

1.大了一点:多出来的空间小于小于下面空闲的空间,

做法:
1.1 直接延伸申请空间
1.2 返回原空间首地址**

2.大了很多:多出来的空间大于下面空闲空间,

做法:
2.1 重新开辟新空间
2.2 将旧空间的内容拷贝到新空间中
2.3 释放旧空间
2.4 返回新空间的首地址

② 调整的空间比原有空间小:

做法:
1.将原空间缩小
2 .返回旧空间首地址

面试题2:malloc的实现原理?

一个拓展链接:【CTF】GLibc堆利用入门-机制介绍_哔哩哔哩_bilibili

2. C++动态内存管理方式

#include<iostream>
using namespace std;

int main()
{
	int* p1 = (int*)malloc(sizeof(int));
	int* p2 = (int*)malloc(sizeof(int) * 5);

	return 0;
}

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦

(比如写链表的时候要多次申请空间),因 此C++又提出了自己的内存管理方式:

通过newdelete操作符进行动态内存管理

2.1 new/delete操作内置类型

new/delete 的用法:

#include<iostream>
using namespace std;

int main()
{
	// 动态申请一个int类型的空间
	int* p1 = new int;

	// 动态申请一个int类型的空间并初始化为10
	int* p2 = new int(10);

	// 动态申请10个int类型的空间
	int* p3 = new int[3];

	//释放申请的空间,并置空
	delete p1;
	p1 = nullptr;

	delete p2;
	p2 = nullptr;

	delete[] p3;
	p3 = nullptr;

	return 0;
}
申请和释放单个元素的空间,使用 new delete 操作符,
申请和释放连续的空间, 使用 new[ ] delete[ ] ,注意:匹配起来使用。

是不是非常的方便,而且 new 不需要强制类型转换。

2.2 初始化new数组的问题

C++98 不支持初始化 new 数组:

int* p = new int[5];

 但现在已经2023年了,C++11 允许大括号初始化,

我们就可以用 { } 列表初始化:(后面学C++11还会学这个语法)

int* p4 = new int[5] {1, 2};         // 1 2 0 0 0
int* p5 = new int[5] {1, 2, 3, 4, 5};  // 1 2 3 4 5

2.3 new 和 delete 操作自定义类型

我们知道了,malloc / free 和 new / delete 对于内置类型没有本质区别,

那么它存在的意义是什么呢?仅仅是因为用法更简洁吗?

巨佬为了这么点事设计出来?可以但没必要,看看作用:

#include<iostream>
using namespace std;

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};

int main()
{
	// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间
	//还会调用构造函数和析构函数
	A* p1 = (A*)malloc(sizeof(A));
	A* p2 = new A(1);
	free(p1);
	delete p2;

	// 内置类型是几乎是一样的
	int* p3 = (int*)malloc(sizeof(int)); // C
	int* p4 = new int;
	free(p3);
	delete p4;

	A* p5 = (A*)malloc(sizeof(A) * 10);
	A* p6 = new A[10];
	free(p5);
	delete[] p6;

	return 0;
}

new 不仅会开内存,还会调用对应的构造函数初始化,

相对的,free 只是把 p1 p2 指向的空间释放掉。

而 delete 不仅会释 p1 p2 指向的空间,delete 还会调用对应的析构函数。

new / delete 不仅仅是写法上变得简单了, 可以说就是为了自定义类型弄出来的。

(还有以后学的抛异常,下面讲operator new函数也简单的讲了一下)

new 对应的是 delete,可以可以 new 出来的用 free 释放?

不建议大家混着用, new 出来的用 free,有的编译器就会报错,

new[ ] 出来的 你去 delate 而不是 delate[ ]  也可能会报错。

总结:

在申请自定义类型的空间时,new 会调用构造函数,

delete 会调用析构函数,而 malloc 与 free 不会。

new:在堆上申请空间 + 调用构造函数输出。

delete:先调用指针类型的析构函数 + 释放空间给堆上。

匹配使用:malloc/free ,delete/delete ,new[ ] / delete[ ] 

3. operator newoperator delete函数详解

3.1 operator newoperator delete函数

new delete 是用户进行 动态内存申请和释放的操作符
operator new operator delete是 系统提供的全局函数,(不是运算符重载)
new 在底层调用 operator new 全局函数来申请空间,
delete 在底层通过 operator delete 全局函数来释放空间。

看看源码:(看不懂的跳过就行)

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
失败,尝试执行:空间不足应对措施,如果该应对措施用户设置了,则继续申请,否则抛异常。
*/
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;
	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK);  /* block other threads */
	__TRY
		        /* get a pointer to memory block header */
		pHead = pHdr(pUserData);
	         /* verify block type */
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);
	__FINALLY
		_munlock(_HEAP_LOCK);  /* release other threads */
	__END_TRY_FINALLY
		return;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现可以知道: 

① operator new 实际上也是通过 malloc 来申请空间的。

② operator delete 最终也是通过 free 来释放空间的。

如果 malloc 申请空间成功就直接返回,否则执行用户提供的空间不足的应对措施,

如果用户提供该措施就继续申请,否则就抛异常。

面向过程的语言处理错误的方式:

返回值 + 错误码解决(这个我们之前学过):

#include <stdio.h>
#include <stdlib.h>

int main()
{
	char* p1 = (char*)malloc(1024u * 1024u * 1024u * 2u);
	if (p1 == nullptr) 
	{
		printf("%d\n", errno);
		perror("malloc fail");
		exit(-1);
	}
	else 
	{
		printf("%p\n", p1);
	}

	return 0;
}

而面向对象语言处理错误的方式:

一般是抛异常,C++中也要求出错抛异常 —— try catch(后面会细学)。

#include <iostream>
using namespace std;

int main()
{
	char* p2 = nullptr;
	try
	{
		char* p2 = new char[1024u * 1024u * 1024u * 2u - 1];
	}
	catch (const exception& e) 
	{
		cout << e.what() << endl;
	}
	printf("%p\n", p2);

	return 0;
}

C++ 提出 new 和 delete,主要是解决两个问题:

① 自定义类型对象自动申请的时候,初始化合清理的问题。

     new / delete 会调用构造函数和析构函数。

② new 失败了以后要求抛异常,这样才符合面向语言的出错处理机制。

(delete 和 free 一般不会失败,如果失败了,就是释放空间上存在越界或者释放指针位置不对)

3.2  重载operator new 与 operator delete(了解)

默认情况下operator new 与 operator delete使用全局库里面

如果我们自己重载operator new 与 operator delete了,

那么编译器就会调我们自己重载的,而不会调原来的:

#include<iostream>
using namespace std;

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}

	~A()
	{
		cout << "~A():" << this << endl;
	}

private:
	int _a;
};

// 重载operator delete,在申请空间时:打印在哪个文件、哪个函数、第多少行,申请了多少个字节
void* operator new(size_t size, const char* fileName, const char* funcName, size_t lineNo)
{
	void* p = ::operator new(size);
	cout << "new:" << fileName << "||" << funcName << "||" << lineNo << "||" << p << "||" << size << endl;
	return p;
}

 重载operator delete,在释放空间时:打印再那个文件、哪个函数、第多少行释放,不实现这个,不然使用要加()
//void operator delete(void* p, const char* fileName, const char* funcName, size_t lineNo)
//{
//	cout << "delete:" << fileName << "||" << funcName << "||" << lineNo << "||" << p << endl;
//	::operator delete(p);
//}

// 重载operator delete
void operator delete(void* p)
{
	cout << "delete:" << endl;
	free(p);
}

#ifdef _DEBUG
     #define new new(__FILE__, __FUNCTION__, __LINE__)
     // #define delete(p) operator delete(p, __FILE__, __FUNCTION__, __LINE__) 不实现这个宏,不然使用要加()
#endif

int main()
{
	A* p1 = new A;
	delete p1;

	A* p2 = new A[4];
	delete[] p2;

	A* p3 = new A;
	delete p3;

	A* p4 = new A;
	delete p4;

	A* p5 = new A;
	delete p5;

    return 0;
}

这里为了好看就不把文件名打印出来了:

类内重载operator new 与 operator delete:

我们知道:new -> operator new + 构造函数,默认情况下operator new使用全局库里面

每个类可以去实现自己专属operator new  new这个类对象,它就会先调自己实现这个operator new

上面我们提到:C语言内存管理方式在有些地方无能为力,而且使用起来比较麻烦

下面代码演示了,针对链表的节点 ListNode 通过重载类专属 operator new / operator delete,

实现链表节点使用内存池申请和释放内存,提高效率:

// new -> operator new + 构造函数
// 默认情况下operator new使用全局库里面
// 每个类可以去实现自己专属operator new  new这个类对象,他就会调自己实现这个operator new

// 实现一个类专属的operator new  -- 了解一下

#include<iostream>
using namespace std;

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}

	~A()
	{
		cout << "~A():" << this << endl;
	}

private:
	int _a;
};

struct ListNode
{
	int _val;
	ListNode* _next;

	static allocator<ListNode> alloc;// 内存池

	void* operator new(size_t n)
	{
		cout << "operator new -> STL内存池allocator申请" << endl;
		void* obj = alloc.allocate(1);
		return obj;
	}

	void operator delete(void* ptr)
	{
		cout << "operator delete -> STL内存池allocator申请" << endl;

		alloc.deallocate((ListNode*)ptr, 1);
	}

	struct ListNode(int val)
		:_val(val)
		, _next(nullptr)
	{}
};

// allocator以后会讲,现在先了解即可
allocator<ListNode> ListNode::alloc;

int main()
{
	// 频繁申请ListNode. 想提高效率 -- 申请ListNode时,不去malloc,而是自己定制内存池
	ListNode* node1 = new ListNode(1);
	ListNode* node2 = new ListNode(2);
	ListNode* node3 = new ListNode(3);

	delete node1;
	delete node2;
	delete node3;

	A* p1 = new A;

	return 0;
}

4. new 和 delete 的实现原理

4.1 对于内置类型

如果申请的是内置类型的空间,new 和 malloc,delete 和 free 基本相似。

不同的地方是,new / delete 申请和释放的是单个元素的空间,

new[ ] 和 delete[ ] 申请的是连续空间。

而且 new 再申请空间失败时会抛异常,malloc会返回NULL。

operator new 和 operator delete 就是对 malloc 和 free 的封装。

operator new 中调用 malloc 后申请内存,失败以后,改为抛异常处理错误,

这样符合C++面向对象语言处理错误的方式。

4.2 对于自定义类型

new 的原理:

① 调用 operator new 函数申请空间。

② 在申请空间上执行构造函数,完成对象的构造。

delete 的原理:

① 在空间上执行析构函数,完成对象中资源的清理工作。

② 调用 operator delete 函数释放对象的空间。

new T[N] 的原理:

① 调用 operator new[] 函数,在 operator new[] 中实际调用

operator new 函数完成 N 个对象空间的申请。

② 在申请的空间上调用 N 次构造函数,对它们分别初始化。

delete[] 的原理:

① 在释放的对象空间上执行 N 次析构函数,完成 N 个对象中资源的清理。

② 调用 operator delete[] 释放空间,实际在 operator delete[] 中调用 

operator delete 来释放空间。

5. 定位new(了解)

5.1 定位new表达式(placement-new)

定位 new 表达式实在已分配的原始空间中调用构造函数初始化一个对象。

简单来说就是,定位new表达式可以在已有的空间进行初始化。

写法:

new(目标地址指针)类型                         // 不带参
new(目标地址指针)类型(该类型的初始化列表)       // 带参

注意:目标地址必须是一个指针

5.2 定位new的使用场景

定位 new 在特定情况下是有用的。

比如开的空间是从内存池来的,如果想初始化,我们就可以使用它。

因为内存池分配出的内存初始化,所以如果是自定义类型的对象,

需要使用 new 定义的表达式进行显示调用构造函数进行初始化。

#include<iostream>
using namespace std;

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}

	~A()
	{
		cout << "~A():" << this << endl;
	}

private:
	int _a;
};

int main()
{
	A* p1 = new A;

	A* p2 = (A*)malloc(sizeof(A));
	if (p2 == nullptr)
	{
		perror("malloc fail");
	}
	//new(p2)A;
	new(p2)A(10);

	return 0;
}

模拟一下 new 的行为:

int main()
{
	A* p1 = (A*)malloc(sizeof(A));
	new(p1)A(10);
 
    // 模拟一下new的行为
	A* p2 = new A(2); 
 
	// 等价于:
	A* p3 = (A*)operator new(sizeof(A));
	new(p3)A(3);
 
	return 0;
}

没事不会这么写,但是有时候,内存不一定是从堆来的,比如从内存池来的,

定位 new 就有用了,高并发内存池,实现定长内存池的时候就需要使用 定位 new。

6. 常见面试题

6.1 malloc/freenew/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。
不同的地方是:
1. malloc和free是函数,new和delete是操作符
2. malloc申请的空间不会初始化,new可以初始化
3. malloc申请空间时,需要手动计算空间大小并传递,
new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可
4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,
new不需要,但是new需要捕获异常
6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,
而new在申请空间后会调用构造函数完成对象的初始化,
delete在释放空间前会调用析构函数完成空间中资源的清理

7. 笔试选择题

7.1 下面有关c++内存分配堆栈说法错误的是( )

A.对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制

B. 对于栈来讲,生长方向是向下的,也就是向着内存地址减小的方向;对于堆来讲,它的生长方向是向上的,是向着内存地址增加的方向增长

C.对于堆来讲,频繁的 new/delete 势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题

D.一般来讲在 32 位系统下,堆内存可以达到4G的空间,但是对于栈来讲,一般都是有一定的空间大小的

7.2 C++中关于堆和栈的说法,哪个是错误的:( )

A.堆的大小仅受操作系统的限制,栈的大小一般较小

B.在堆上频繁的调用new/delete容易产生内存碎片,栈没有这个问题

C.堆和栈都可以静态分配

D.堆和栈都可以动态分配

7.3 c++中,类ClassA的构造函数和析构函数的执行次数分别为( )

ClassA *pclassa=new ClassA[5];

delete pclassa;

A.5,1

B.1,1

C.5,5

D.程序可能崩溃

7.4 函数参数使用的空间是在()中申请的,malloc或new是在()中申请空间的?()

A.堆,栈

B.栈,堆

C.栈, 栈

D.堆,堆

7.5 下面有关malloc和new,说法错误的是? ( )

A.new 是创建一个对象(先分配空间,再调构造函数初始化), malloc分配的是一块内存

B.new 初始化对象,调用对象的构造函数,对应的delete调用相应的析构函数,malloc仅仅分配内存,free仅仅回收内存

C.new和malloc都是保留字,不需要头文件支持

D.new和malloc都可用于申请动态内存,new是一个操作符,malloc是是一个函数

7.6 设已经有A,B,C,D4个类的定义,程序中A,B,C,D析构函数调用顺序为? ( )

C c;
void main()
{
  A*pa=new A();
  B b;
  static D d;
  delete pa;
}

A.A B C D

B.A B D C

C.A C D B

D.A C B D

7.7 使用 char* p = new char[100]申请一段内存,然后使用delete p释放,有什么问题?( )

A.会有内存泄露

B.不会有内存泄露,但不建议用

C.编译就会报错,必须使用delete []p

D.编译没问题,运行会直接崩溃

7.8 以下代码中,A 的构造函数和析构函数分别执行了几次: ( )

A.1、1

B.10、10

C.1、10

D.10、1

7.9 变量所在哪个内存区域以及变量所占空间大小是多少?

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1, 2, 3, 4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) * 4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
	free(ptr1);
	free(ptr3);
}

1. 选择题:

  选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

  globalVar在哪里?____  staticGlobalVar在哪里?____

  staticVar在哪里?____  localVar在哪里?____

  num1 在哪里?____

  

  char2在哪里?____   *char2在哪里?___

  pChar3在哪里?____   *pChar3在哪里?____

  ptr1在哪里?____    *ptr1在哪里?____

2. 填空题:

  sizeof(num1) = ____;  

  sizeof(char2) = ____;   strlen(char2) = ____;

  sizeof(pChar3) = ____;   strlen(pChar3) = ____;

  sizeof(ptr1) = ____;

答案:

7.1 D

A.栈区主要存在局部变量和函数参数,其空间的管理由编译器自动完成,无需手动控制,堆区是自己申请的空间,在不需 要时需要手动释放
B.栈区先定义的变量放到栈底,地址高,后定义的变量放到栈顶,地址低,因此是向下生长的,堆区则相反
C.频繁的申请空间和释放空间,容易造成内存碎片,甚至内存泄漏,栈区由于是自动管理,不存在此问题
D.32位系统下,最大的访问内存空间为4G,所以不可能把所有的内存空间当做堆内存使用,故错误
 

7.2 C

A.堆大小受限于操作系统,而栈空间一般有系统直接分配
B.频繁的申请空间和释放空间,容易造成内存碎片,甚至内存泄漏,栈区由于是自动管理,不存在此问题
C.堆无法静态分配,只能动态分配
D.栈可以通过函数_alloca进行动态分配,不过注意,所分配空间不能通过free或delete进行释放
 

7.3 D

申请对象数组,会调用构造函数5次,delete由于没有使用[],此时只会调用一次析构函数,但往往会引发程序崩溃,要想完整释放数组空间,需要使用[]

7.4 B

7.5 C

A.new会申请空间,同时调用构造函数初始化对象,malloc只做一件事就是申请空间
B.new/delete与malloc/free最大区别就在于是否会调用构造函数与析构函数
C.需要头文件malloc.h,只是平时这个头文件已经被其他头文件所包含了,用的时候很少单独引入,故错误
D.new是操作符,malloc是函数
 

7.6 B

首先手动释放pa, 所以会先调用A的析构函数,其次C B D的构造顺序为 C D B,因为先构造全局对象,再构造局部静态对象,最后才构造普通对象,然而析构对象的顺序是完全按照构造的相反顺序进行的,所以答案为 B

7.7 B

A.对于内置类型,此时delete就相当于free,因此不会造成内存泄漏
B.正确
C.编译不会报错,建议针对数组释放使用delete[],如果是自定义类型,不使用方括号就会运行时错误
D.对于内置类型,程序不会崩溃,但不建议这样使用

7.8 B

A.申请数组空间,构造函数调用的次数就是数组的大小
B.正确
C.申请数组空间,构造函数调用的次数就是数组的大小
D.如果释放数组空间,delete使用了[],则会对应的调用数组大小次数的析构函数

7.9 本篇最上面已经说过了:

 

本章完。

下一章:(模板初阶+STL简介)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/19490.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机专业含金量高的证书

目录 第一种证书&#xff1a;计算机技术与软件专业资格考试证书 第二种证书&#xff1a;微软认证 第三种证书&#xff1a;Oracle认证 第四种证书&#xff1a;思科认证 第五种证书&#xff1a;华为认证 第六种证书&#xff1a;红帽认证工程师 第七种证书&#xff1a;阿里…

数据表的创建和管理 (数据库)

目录 一、数据表结构的创建 1、利用create命令创建表 2&#xff0e;关于创建表时运用约束的说明 &#xff08;1&#xff09;空值约束&#xff08;NULL or NOT NULL&#xff09; &#xff08;2&#xff09;主键约束&#xff08;primary key constraint&#xff09; &#x…

Java多线程入门到精通学习大全?了解线程池和线程常用集合的基本原理、代码示例!(第六篇:线程池和集合的学习)

设计和实现多线程应用程序需要了解线程池、线程常用集合等相关知识。下面我们将分别介绍线程池、线程常用集合的原理、使用场景、代码示例、注意事项和总结。 1. 线程池 线程池是一种线程调度机制&#xff0c;它可以管理多个线程&#xff0c;并且可以重复使用这些线程来处理多…

Node.js 与 TypeScript

目录 1、什么是 TypeScript 2、运行TypeScript 3、TypeScript 在Node.js 生态中的情况 1、什么是 TypeScript TypeScript是一种流行的开源语言&#xff0c;由微软维护和开发。它受到了世界各地许多软件开发人员的喜爱和使用。 基本上&#xff0c;它是JavaScript的超集&…

SpringBoot+@Validate+全局异常拦截实现自定义规则参数校验(校验get请求参数不能为空且在指定枚举类型中)

场景 SpringBootValidated实现参数验证(非空、类型、范围、格式等)-若依前后端导入Excel数据并校验为例&#xff1a; SpringBootValidated实现参数验证(非空、类型、范围、格式等)-若依前后端导入Excel数据并校验为例_validated 怎么设置boolean类型非空_霸道流氓气质的博客-…

公司新来的00后真是卷王,工作没两年,跳槽到我们公司起薪18K都快接近我了

都说00后躺平了&#xff0c;但是有一说一&#xff0c;该卷的还是卷。这不&#xff0c;前段时间我们公司来了个00后&#xff0c;工作都没两年&#xff0c;跳槽到我们公司起薪18K&#xff0c;都快接近我了。后来才知道人家是个卷王&#xff0c;从早干到晚就差搬张床到工位睡觉了。…

瑞云渲染农场怎么用,瑞云渲染多少钱一分钟?

Renderbus瑞云渲染农场作为亚洲前沿的 云渲染平台&#xff0c;一直以“做最好的云渲染工具”为愿景&#xff0c;紧跟CG行业的技术创新与发展&#xff0c;致力于提供专业可靠、安全稳定、可持续创新的云渲染解决方案&#xff0c;助力推动行业快速发展&#xff0c;被誉为中国云渲…

【2023/05/10】Mitchel Resnick

Hello&#xff01;大家好&#xff0c;我是霜淮子&#xff0c;2023倒计时第5天。 Share Her wistful face haunts my dreams like the rain at night. 译文&#xff1a; 她的热切的脸&#xff0c;如夜雨似的&#xff0c;搅扰着我的梦魂。 Once we dreamt that we were stra…

支付系统设计三:渠道网关设计06-业务处理

文章目录 前言一、业务服务工厂二、业务处理服务1. 业务处理服务2. 业务处理抽象服务3. 流量控制4. 报文提交4.1 获取交易的服务端通讯列表4.2 循环请求支付渠道4.2.1 报文组装4.2.2 报文发送4.2.2.1 协议处理器获取4.2.2.2 构建通讯客户端4.2.2.3 发送请求4.2.2.4 响应报文读取…

股票量价关系基础知识2

内盘与外盘 外盘&#xff0c;是指在一个交易日获某段交易时间内&#xff0c;买方主动提价以委卖价成交的股数之和&#xff0c;也称为主动性买盘 内盘&#xff0c;是指在一个交易日获某段交易时间内&#xff0c;卖方主动降价以委买价成交的股数之和&#xff0c;也称主动性卖盘。…

中文润色ai-ai原创文章生成器

在现代社会&#xff0c;每天都有大量的中文文章被发布到互联网上&#xff0c;这些文章的质量和可读性直接影响着读者的阅读体验和文章的传播效果。为了让文章更加美好&#xff0c;越来越多的人开始尝试使用中文润色ai技术。 中文润色ai是一种先进的人工智能技术&#xff0c;它能…

数字图像处理-matlab图像内插

matlab图像内插 最近邻插值双线性插值双三次插值总结 最近邻插值 目标各像素点的灰度值代替源图像中与其最邻近像素的灰度值 参考博客 假设一个2X2像素的图片采用最近邻插值法需要放大到4X4像素的图片&#xff0c;右边该为多少&#xff1f; 最近邻插值法坐标变换计算公式&…

Vue核心 列表渲染 数据监视

1.13.列表渲染 1.13.1.基本列表 v-for指令 用于展示列表数据语法&#xff1a;&#xff0c;这里key可以是index&#xff0c;更好的是遍历对象的唯一标识可遍历&#xff1a;数组、对象、字符串&#xff08;用的少&#xff09;、指定次数&#xff08;用的少&#xff09; <!…

Kubesphere流水线实现蓝绿发布

Kubesphere流水线实现蓝绿发布 1. Gitlab仓库准备 1.1 创建仓库 新建空白项目,名字随便取 greenweb复制克隆地址 http://192.168.31.199/deploy/greenweb.git1.2 初始化并上传代码 克隆并初始化代码仓库 mkdir git cd git git clone http://192.168.31.199/deploy/green…

【嵌入式烧录刷写文件】-2.3-删除/修改Intel Hex文件中指定地址范围内的数据

案例背景&#xff08;共6页精讲&#xff09;&#xff1a; 有如下一段HEX文件&#xff0c;如何“自动”地完成地址范围0x9110-0x9113数据的删除或修改。 :2091000058595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576775F :2091200078797A7B7C7D7E7F808182838485…

一觉醒来Chat gpt就被淘汰了

目录 什么是Auto GPT&#xff1f; 与其他语言生成模型相比&#xff0c;Auto GPT具有以下优点 Auto GPT的能力 Auto GPT的能力非常强大&#xff0c;它可以应用于各种文本生成场景&#xff0c;包括但不限于以下几个方面 Auto GPT的历史 马斯克说&#xff1a;“ChatGPT 好得吓…

记csdn打不开或打开缓慢后的修复--如何查找dns并修改hosts文件

记csdn打开缓慢后的修复–如何查找dns并修改hosts文件 问题&#xff1a; CSDN文章打开的十分缓慢&#xff0c;经常出现无法打开页面的错误提示 &#xff08;以前用的好好的&#xff0c;现在不知道公司局域网改了什么东西&#xff0c;导致我的电脑打开CSDN经常缓慢好久&#x…

Lesson14 高级IO

前言 IO 等待 数据拷贝,比如read/recv,write/send只要在单位事件里,让等的比重减低,IO的效率就越高 五种IO模型 钓鱼小案例 阻塞式 阻塞式: 张三拿着一根鱼竿,一直在岸边钓鱼,期间一直盯着鱼竿,等待鱼上钩 非阻塞式轮询式 非阻塞式轮询式: 李四拿着一根鱼竿,在岸边钓鱼,期…

Linux共享库、动态库详解

目录 一.静态库 二.动态库 三.静态库的制作与使用 四.动态库的制作与使用 在日常编程中我们不想让别人看到我们写的源码&#xff0c;但还需要发给对方使用&#xff0c;在这种情况下我们引入了静态库动态库&#xff0c;让对方用调库的方式也可以实现我们写的代码的功能&…

Android电源管理介绍

一、电源管理基础知识 1.1电源管理的几种状态 Android kernel源码中&#xff0c;定义了三种电源状态&#xff0c;在kernel/power/suspend.c中&#xff1a; 对应的宏定义/include/linux/suspend.h 1.2 电源管理状态的介绍&#xff1a; PM_SUSPEND_ON 设备处于正常工作状态 …