【无标题】c++异常机制的一些总结以及思考

在谈及c++处理异常机制的方法之前我们不妨来回顾一下c语言是如何应对这块的。

  1. 终止程序,如assert,缺陷:用户难以接受。如发生内存错误,除0错误时就会终止程序。

  2. 返回错误码,缺陷:需要程序员自己去查找对应的错误。如系统的很多库的接口函数都是通

过把错误码放到errno中,表示错误

如果用assert直接终止程序运行未免也太过粗暴,而且如果单单报错误码我们其实很难看出问题在哪里,所以c++11为了对于这块做出更好的处理补充了新的特性。

1.c++异常概念

1.1概念

异常是一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数的

直接或间接的调用者处理这个错误

1.2三个基础用法关键词

throw: 当问题出现时,程序会抛出一个异常。这是通过使用 throw 关键字来完成的。

catch: 在您想要处理问题的地方,通过异常处理程序捕获异常.catch 关键字用于捕获异

常,可以有多个catch进行捕获。

try: try 块中放置可能抛出异常的代码,try 块中的代码被称为保护代码,它后面通常跟着一个或多个 catch 块。

try
{
  // 保护的标识代码
}catch( ExceptionName e1 )
{
  // catch 块
}catch( ExceptionName e2 )
{
  // catch 块
}catch( ExceptionName eN )
{
  // catch 块
}

2.异常的使用机制

2.1捕获或抛出遵守的一些规则

首先异常是抛出对象或者普通变量而引发的,此对象的类型决定了应该激活哪个catch处理板块的代码,当两个对象类型一致的时候,看throw与哪个catch近就调用哪个catch。

抛出异常对象后,会生成一个异常对象的拷贝,因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象,这个拷贝的临时对象会在被catch以后销毁。

实际中抛出和捕获的匹配原则有个例外,并不都是类型完全匹配,可以抛出的派生类对象,使用基类捕获

2.2异常调用链中函数栈展开的匹配原则

在这里插入图片描述

double Division(int a, int b)
{
    // 当b == 0时抛出异常
 if (b == 0)
   throw "Division by zero condition!";
    else
        return ((double)a / (double)b);
}
void Func()
{
 int len, time;
 cin >> len >> time;
 cout << Division(len, time) << endl;
}
int main()
{
 try {
 Func();
 }
 catch (const char* errmsg) {
 cout << errmsg << endl;
 }
    catch(...){
   cout<<"unkown exception"<<endl;           //我们最后都要加一个catch(...)捕获任意类型的异常,否则当有异常没捕获,程序就会直接终止。
   }
 return 0;
}
2.3异常的重新抛出

有可能单个的catch不能完全处理一个异常,在进行一些校正处理以后,希望再交给更外层的调用链函数来处理,catch则可以通过重新抛出将异常传递给更上层的函数进行处理。

例子:

  double Division(int a, int b)
{
 // 当b == 0时抛出异常
 if (b == 0)
 {
 throw "Division by zero condition!";
 }
 return (double)a / (double)b;
}


  void Func()
{
 // 这里可以看到如果发生除0错误抛出异常,另外下面的array没有得到释放。
 // 所以这里捕获异常后并不处理异常,异常还是交给外面处理,这里捕获了再
 // 重新抛出去。
 int* array = new int[10];
 try {
 int len, time;
 cin >> len >> time;
 cout << Division(len, time) << endl;
 }
 catch (...)
 {
 cout << "delete []" << array << endl;
 delete[] array;
 throw;
 }
 // ...
 cout << "delete []" << array << endl;
 delete[] array;
}

  int main()
{
 try
 {
 Func();
 }
 catch (const char* errmsg)
 {
 cout << errmsg << endl;
 }
 return 0;
}
2.3异常的安全以及规范

构造函数完成对象的构造和初始化最好不要在构造函数中抛出异常,否则可能导致对象不完整或没有完全初始化

析构函数主要完成资源的清理最好不要在析构函数内抛出异常,否则可能导致资源泄漏(内存泄漏、句柄未关闭等)

// 这里表示这个函数会抛出A/B/C/D中的某种类型的异常
void fun() throw(A,B,C,D);
// 这里表示这个函数只会抛出bad_alloc的异常
void* operator new (std::size_t size) throw (std::bad_alloc);
// 这里表示这个函数不会抛出异常
void* operator delete (std::size_t size, void* ptr) throw();
// C++11 中新增的noexcept,表示不会抛异常
thread() noexcept;
thread (thread&& x) noexcept;

3.c++标准库的异常标准体系

其实实际当中个公司都会有一套自己的异常体系,进行规范的异常管理,往往抛出的异常为继承的派生类对象,这样捕获的时候用基类就可以了

而C++ 提供了一系列标准的异常,定义在 中,我们可以在程序中使用这些标准的异常。它们是以父子类层次结构组织起来的,如下所示:

在这里插入图片描述
在这里插入图片描述

当然因为这套体系设计的不够好所以我们很少会用到它

4.异常的优缺点

4.1优点
  1. 异常对象定义好了,相比错误码的方式可以清晰准确的展示出错误的各种信息,甚至可以包含堆栈调用的信息,这样可以帮助更好的定位程序的bug。

  2. 返回错误码的传统方式有个很大的问题就是,在函数调用链中,深层的函数返回了错误,那么我们得层层返回错误,最外层才能拿到错误,具体看下面的详细解释。

     // 1.下面这段伪代码我们可以看到ConnnectSql中出错了,先返回给ServerStart,ServerStart再返回给main函数,main函数再针对问题处理具体的错误。
      // 2.如果是异常体系,不管是ConnnectSql还是ServerStart及调用函数出错,都不用检查,因为抛出的异常异常会直接跳到main函数中catch捕获的地方,main函数直接处理错误。
      int ConnnectSql()
     {
     // 用户名密码错误
     if (...)
     return 1;
      
          // 权限不足
     if (...)
     return 2;
     }
      
      int ServerStart() {
     if (int ret = ConnnectSql() < 0)
     return ret;
          int fd = socket() 
          if(fd < 0return errno;
     }
      
      int main()
     {
     if(ServerStart()<0)
     ...
      
     return 0;
     }
    
  3. 很多的第三方库都包含异常,比如boost、gtest、gmock等等常用的库,那么我们使用它们也需要使用异常。

  4. 部分函数使用异常更好处理,比如构造函数没有返回值,不方便使用错误码方式处理。比如T& operator这样的函数,如果pos越界了只能使用异常或者终止程序处理,没办法通过返回值表示错误。

4.2缺点
  1. 异常会导致程序的执行流乱跳,并且非常的混乱,并且是运行时出错抛异常就会乱跳。这会导致我们跟踪调试时以及分析程序时,比较困难。

  2. 异常会有一些性能的开销。当然在现代硬件速度很快的情况下,这个影响基本忽略不计。

  3. C++没有垃圾回收机制,资源需要自己管理。有了异常非常容易导致内存泄漏、死锁等异常安全问题。这个需要使用RAII来处理资源的管理问题。学习成本较高。

  4. C++标准库的异常体系定义得不好,导致大家各自定义各自的异常体系,非常的混乱。

  5. 异常尽量规范使用,否则后果不堪设想,随意抛异常,外层捕获的用户苦不堪言。所以异常规范有两点:一、抛出异常类型都继承自一个基类。二、函数是否抛异常、抛什么异常,都使用 func() throw();的方式规范化。

总结:异常总体而言,利大于弊,所以工程中我们还是鼓励使用异常的。另外OO的语言基本都是用异常处理错误,这也可以看出这是大势所趋。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/19719.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

输入url后,到页面展示出来

目录 1、用户在浏览器中输入url地址 2、缓存解析 3、浏览器进行DNS解析域名得到服务器ip地址 4、TCP三次握手建立客户端和服务器的连接 5、客户端发送HTTP请求获取服务器端的静态资源 6、服务器发送HTTP响应报文给客户端&#xff0c;客户端获取到页面静态资源 7、TCP四次…

快速了解 TypeScript

目录 1、简介 2、安装TypeScript 3、编译代码 4、类型注解 5、接口 6、类 7、运行TypeScript Web应用 1、简介 TypeScript是JavaScript类型的超集&#xff0c;它可以编译成纯JavaScript。 TypeScript可以在任何浏览器、任何计算机和任何操作系统上运行&#xff0c;并且…

LeetCode_Day2 | 有意思的数组滑动窗口及螺旋矩阵

LeetCode_数组 977.有序数组的平方1.题目描述2.暴力法3. 双指针法 209.长度最小的子数组1.题目描述2.暴力法3.滑动窗口(双指针法) 59.螺旋矩阵1.题目描述2. 螺旋矩阵解法 977.有序数组的平方 1.题目描述 给你一个按 非递减顺序 排序的整数数组 nums&#xff0c;返回 每个数字…

推荐6个我经常逛的“小网站”,嘿嘿嘿!!!

如今&#xff0c;全球互联网上已经有超过 17 亿个网站。除了全球那些主流网站被大家所熟知外&#xff0c;其实还有很多很多网站&#xff0c;被淹没在了互联网世界中。 每次发现优质的内容都会第一时间给大家分享出来&#xff0c;不管是软件&#xff0c;插件&#xff0c;脚本还…

为什么要做计划跟踪:没有计划,就没有控制

日常工作中&#xff0c;我们每天都被大量的信息和任务填满&#xff0c;常常由于任务繁冗复杂&#xff0c;让人陷入一种无所适从的状态。 我们经常会看到很多如何安排工作计划的教程&#xff0c;比如&#xff1a; 要把大的项目分解为小目标&#xff0c;小目目标再分解为日常任务…

【iOS】—— 实现WebSocket发送消息(SocketRocket第三方库的使用和解析)

文章目录 WebSocketWebSocket特点 SocketRocket导入头文件设置代理SRWebSocket的初始化和建立连接SRWebSocketDelegate 代理方法实现加上简单UI实现两个用户之间简单通信浅看了一点点源码&#xff08;理解的不深&#xff09; 偶然之间了解到了利用WebSocket实现后端和前端的相互…

获取两个日期间时长 (XX天XX时XX分)

使用场景&#xff1a; 发货日期与到货日期 计算运输时长 代码&#xff1a; private String getMinuteTime(String startTime, String endTime) {String minuteTime null;if (StrUtil.isNotBlank(startTime) && StrUtil.isNotBlank(endTime)) {long minute DateUti…

华为OD机试真题 Java 实现【猜字谜】【2023Q1 100分】

一、题目描述 小王设计了一人简单的清字谈游戏&#xff0c;游戏的迷面是一人错误的单词&#xff0c;比如nesw&#xff0c;玩家需要猜出谈底库中正确的单词。猜中的要求如 对于某个谜面和谜底单词&#xff0c;满足下面任一条件都表示猜中&#xff1a; 变换顺序以后一样的&…

寅家科技完成近亿元B1轮融资,加速高阶智能驾驶布局

近日&#xff0c;寅家科技宣布完成近亿元人民币B1轮融资&#xff0c;本轮融资由东方富海、深创投、深圳高新投联合投资&#xff0c;所募资金主要用于公司高阶智能驾驶技术产品的研发迭代&#xff0c;以及智能驾驶产品量产、海外市场开拓&#xff0c;从而进一步提升核心产品的市…

【重新定义matlab强大系列三】MATLAB清洗离群数据(查找、填充或删除离群值)

&#x1f517; 运行环境&#xff1a;matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 #### 防伪水印——左手の明天 #### &#x1f497; 大家好&#x1f917;&#x1f91…

应届生如何在职场中提高竞争力?这些方法和策略不容错过!

当前就业形势严峻&#xff0c;对于即将步入职场的应届生来说&#xff0c;提高自己的竞争力显得尤为重要。那么&#xff0c;要如何提高自己的职场竞争力呢&#xff1f;本文将为你分享一些有效的方法和策略&#xff0c;帮助你在职场中获得更好的发展。 一、提高自身素质 职场中&…

关于ADC的笔记1

ADC&#xff0c;全称Anlog-to-Digital Converter&#xff0c;模拟/数字转换器。是指将连续变量的模拟信号转换为离散的数字信号的器件&#xff0c;我们能通过ADC将外界的电压值读入我们的单片机中. 常见的ADC有两种 1.并联比较型&#xff1a; 它的优点是转换速度最快&#x…

VMware 产品下载汇总 2023 持续更新中

本站 VMware 产品下载汇总&#xff1a;vSphere、NSX、Tanzu、Aria、Cloud… 请访问原文链接&#xff1a;https://sysin.org/blog/vmware/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org 本站提供的 VMware 软件全部为 “试用版…

数据分析04——Pandas简介/Series对象/DataFrame对象

1、Pandas简介&#xff1a; Pandas是基于NumPy开发的数据分析三大剑客之一&#xff0c;Python数据分析的核心库提供快速、灵活、明确的数据结构Series对象&#xff1a;一维数组结构&#xff0c;由index和value构成DataFrame对象&#xff1a;二维数组结构&#xff0c;由index、…

106.(cesium篇)cesium椎体旋转

听老人家说:多看美女会长寿 地图之家总目录(订阅之前建议先查看该博客) 文章末尾处提供保证可运行完整代码包,运行如有问题,可“私信”博主。 效果如下所示: 下面献上完整代码,代码重要位置会做相应解释 <html lang="en"> <

RT-Thread 5.0.1 qemu-virt64-aarch64 解决编译问题

前言 最近在最新的 RT-Thread 上搭建 bsp qemu-virt64-aarch64 的编译环境&#xff0c;发现较新的 gcc 交叉编译器编译失败了。 经过尝试较旧版本的 gcc 交叉编译工具链&#xff0c;终于编译通过了 下载 gcc 交叉编译工具链&#xff0c;这里推荐使用 arm 官方的 gcc 下载地址…

眼球追踪、HDR、VST,从代码挖掘Valve下一代VR头显

擅长爆料、挖掘线索的Brad Lynch&#xff0c;此前发布了Quest Pro等设备的线索文章引发关注。​近期&#xff0c;又公布一系列与“Valve Deckard”VR头显相关消息&#xff0c;比如支持眼球追踪、HDR、VST透视、Wi-Fi网络等等。在SteamVR 1.26.1测试版更新、Steam用户端、Gamesc…

掌控MySQL并发:深度解析锁机制与并发控制

前一篇MySQL读取的记录和我想象的不一致——事物隔离级别和MVCC 讲了事务在并发执行时可能引发的一致性问题的各种现象。一般分为下面3种情况&#xff1a; 读 - 读情况&#xff1a;并发事务相继读取相同的记录。读取操作本身不会对记录有任何影响&#xff0c;不会引起什么问题&…

基于matlab使用主动声纳系统进行水下目标检测

一、前言 此示例演示如何模拟具有两个目标的主动单基地声纳方案。声纳系统由各向同性投影仪阵列和单个水听器元件组成。投影仪阵列呈球形。反向散射信号由水听器接收。接收到的信号包括直接和多路径贡献。 二、水下环境 在浅水环境中&#xff0c;声源和目标之间存在多个传播路径…

探索深度学习中的计算图:PyTorch的动态图解析

❤️觉得内容不错的话&#xff0c;欢迎点赞收藏加关注&#x1f60a;&#x1f60a;&#x1f60a;&#xff0c;后续会继续输入更多优质内容❤️ &#x1f449;有问题欢迎大家加关注私戳或者评论&#xff08;包括但不限于NLP算法相关&#xff0c;linux学习相关&#xff0c;读研读博…
最新文章