数据结构之二叉树与堆以及力扣刷题函数扩展

个人主页:点我进入主页

专栏分类:C语言初阶      C语言程序设计————KTV       C语言小游戏     C语言进阶

C语言刷题       数据结构初阶

欢迎大家点赞,评论,收藏。

一起努力

目录

1.前言

2.树

2.1概念

 2.2树的相关概念

3.堆

3.1堆的概念

3.2小堆函数实现

4.力扣刷题函数

5.总结


1.前言

        在前面我们学习了关于顺序表,链表,栈,队列的存储方式。今天我将给大家带来关于树的一些内容以及堆的部分内容,详细包括树的定义,树相关的概念,二叉树和满二叉树的概念,树代码的实现会在后面的内容,大堆和小堆的代码实现。今天的内容相较于前面会有一点难以理解,希望大家可以认真学习,当然还有几个力扣刷题的函数扩展,其中的内容就绝对会让你感到其中的乐趣。

2.树

2.1概念

        树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。有一个特殊的结点,称为根结点,根节点没有前驱结点除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继因此,树是递归定义的。

下面我给出关于树的图:

 2.2树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林。

3.堆

3.1堆的概念

        如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。堆我们分为大堆个小堆,大堆是父节点永远大于子节点,小堆是父节点永远小于子节点。堆的图我们认为堆是如下的样子:

事实上我们是顺序表的形式存储的,我们知道堆是一颗完全二叉树,我们将树的每个节点用数字进行标记,如下:

我们不难得出我们知道父节点的编号为n,左孩子的编号为2n+1,右孩子的编号为2n+2,假设左孩子的标号为n那么父节点的编号为(n-1)/2,我们设右孩子的节点为n那么父节点的编号为(n-1)/2,那我们很容易得到孩子节点编号为n父节点的编号为(n-1)/2,根据这一特点我们就可以利用顺序表进行存储,这样也能更好的找到父节点和孩子节点的位置,接下来我们以实现小堆为例子来展示一下大堆和小堆的实现(大堆和小堆的差距只有向上调整的部分符号不同,其余基本一致)。

3.2小堆函数实现

#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
void Swap(MyHeapData* num1, MyHeapData* num2)
{
	MyHeapData temp = *num1;
	*num1 = *num2;
	*num2 = temp;
}
void AdJustUp(MyHeapData* arr, int size)
{
	assert(arr);
	int child = size - 1, parent = (child - 1) / 2;
	while (child > 0)
	{
		if (arr[child] < arr[parent])
		{
			Swap(&arr[child], &arr[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
	}
}
void HeapInit(Heap* php)
{
	assert(php);
	php->data = (MyHeapData*)malloc(sizeof(MyHeapData));
	php->size = 0;
	php->capacity = 0;
}
void HeapDestory(Heap* php)
{
	assert(php);
	free(php->data);
	php->data = NULL;
}
void HeapPush(Heap* php, MyHeapData x)
{
	if (php->size == php->capacity)
	{
		int newcapacity = php->capacity + 2;
		MyHeapData* arr = (MyHeapData*)realloc(php->data, newcapacity * sizeof(MyHeapData));
		if (arr == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->data = arr;
		php->capacity = newcapacity;
	}
	php->data[php->size++] = x;
	AdJustUp(php->data, php->size);
}
void print(Heap* php)
{
	for (int i = 0; i < php->size; i++)
		printf("%d ", php->data[i]);
}
void HeapPop(Heap* php)
{
	assert(php);
	if (!HeapEmpty(php))
	{
		Swap(&php->data[0], &php->data[php->size - 1]);
		php->size--;
		AdJustDown(php->data, php->size);
	}
}
void AdJustDown(MyHeapData* arr, int size)
{
	assert(arr);
	int parent = 0, child = parent * 2 + 1;
	while (child<size)
	{
		if (child + 1 < size && arr[child] > arr[child + 1])
		{
			child++;
		}
		Swap(&arr[parent], &arr[child]);
		parent = child;
		child = parent * 2 + 1;
	}
}
bool HeapEmpty(Heap* php)
{
	assert(php);
	return php->size == 0;
}
void text()
{
	Heap ph;
	HeapInit(&ph);
	HeapPush(&ph, 7);
	HeapPush(&ph, 6);
	HeapPush(&ph, 4);
	HeapPush(&ph, 5);
	HeapPush(&ph, 1);
	HeapPush(&ph, 1);
	HeapPush(&ph, 3);
	print(&ph);
	printf("\n");
	HeapPop(&ph);
	print(&ph);
	printf("\n");
	HeapPop(&ph);
	print(&ph);
	HeapDestory(&ph);
}

到这里我们的小堆就实现完了。

4.力扣刷题函数

        函数为sscanf函数和sprintf函数,其中sscanf函数是将任意类型数据储存在字符串中,spintf函数是将字符串数据输入到新的变量中,他们重新定义了输入输出流,我们看下面代码来感受一下:

#include<stdio.h>
int main()
{
	int a = 10;
	char arr[] = "abcd";
	double f = 1.99;
	char brr[100];
	sprintf(brr, "%d %s %f", a, arr, f);
	printf("%s\n", brr);
	a = 0;
	double b = 0.0;
	sscanf(brr, "%d %s %f", &a, &arr, &b);
	printf("%d %s %f", a, arr, f);
	return 0;
}

运行结果如下:

5.总结

        今天的内容到这里就结束了,非常感谢大家的观看,希望大家可一学到很多东西,尤其是堆的向下调整和向上调整这两个函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/200385.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

virtuoso layout版图设计 调用器件

在设计好一个电路之后&#xff0c;需要对其进行版图设计。 在原理图界面点击 点击ok 库和名字要跟原理图名字一致&#xff0c;一般自动就命名好了&#xff0c;点击ok 出现版图界面&#xff0c;点击左下角的图标。 选择要不要生成boundary 选择layer&#xff0c;一般为M1&#…

优维低代码实践:搜索功能

优维低代码技术专栏&#xff0c;是一个全新的、技术为主的专栏&#xff0c;由优维技术委员会成员执笔&#xff0c;基于优维7年低代码技术研发及运维成果&#xff0c;主要介绍低代码相关的技术原理及架构逻辑&#xff0c;目的是给广大运维人提供一个技术交流与学习的平台。 优维…

Linux之高级IO

目录 IO基本概念五种IO模型钓鱼人例子五种IO模型高级IO重要概念同步通信 VS 异步通信阻塞 VS 非阻塞其他高级IO阻塞IO非阻塞IO IO基本概念 I/O&#xff08;input/output&#xff09;也就是输入和输出&#xff0c;在著名的冯诺依曼体系结构当中&#xff0c;将数据从输入设备拷贝…

《opencv实用探索·四》Mat图像数据类型转换和归一化显示

一种数据类型转为另一种数据类型&#xff0c;不改变图像大小&#xff0c;但每个像素值可能会变 src.convertTo(dst, type, scale, shift);Scale和shitf默认为0&#xff08;这两个参数也相当于对比度和亮度&#xff09; 现在有个8位图像&#xff0c;把8位转成32位 可以看到像素…

WSDM 2024 | LLMs辅助基于内容的推荐系统增强BPR训练数据

本文提出了一种简单而有效的基于LLMs的图数据增强策略&#xff0c;称为LLMRec&#xff0c;以增强基于内容的推荐系统。LLMRec包含三种数据增强策略和两种去噪策略。数据增强策略包括从文本自然语言的角度挖掘潜在的协同信号, 构建用户画像(LLM-based), 并强化item side informa…

JS 倒计时方法(可改造)

起因&#xff1a; 写好备用。 代码&#xff1a; // 直接把方法写在了原型上&#xff0c;通过原型调用 /*** 倒计时* time_str String 到期时间(2023-11-28 16:50:00)* dom_obj Object 需要显示的倒计时的dom对象*/ Date.prototype.countdown function (time_str, dom_obj…

【古月居《ros入门21讲》学习笔记】13_服务数据的定义与使用

目录 说明&#xff1a; 1. 服务模型 2. 实现过程&#xff08;C&#xff09; 自定义服务数据 Person.srv文件内容 Person.srv文件内容说明 编译配置 在package.xml文件中添加功能包依赖 在CMakeLists.txt中添加编译选项 编译生成语言相关文件 创建服务器代码&#xf…

python获取系统当前进程数和最大进程数

参考&#xff1a; https://blog.51cto.com/u_16213345/7115864 https://www.baidu.com/s?wdpython%20%E8%8E%B7%E5%8F%96%E7%B3%BB%E7%BB%9F%E5%BD%93%E5%89%8D%E8%BF%9B%E7%A8%8B%E6%95%B0%E5%92%8C%E6%9C%80%E5%A4%A7%E8%BF%9B%E7%A8%8B%E6%95%B0&rsv_spt1&rsv_iqid…

2023年国内主流的低代码平台

低代码开发平台&#xff08;Low-Code Development Platform, LCDS&#xff09;为企业和开发者提供了高效的应用开发方式。这些平台使得开发者可以通过简化的设计界面快速创建和部署应用&#xff0c;大大提高了开发效率并降低了开发成本。 伴随数字化转型推进&#xff0c;选购低…

外汇天眼:外汇市场中的“双向交易”是什么意思?

说到外汇市场&#xff0c;总免不了提到它双向交易的优势&#xff0c;很多新手会对这一点有所疑问&#xff0c;今天我们就帮大家解决这一个疑问。 何谓双向交易&#xff1f; 金融市场上&#xff0c;交易者最常接触到的股票&#xff0c;多属于单向交易。 单向交易的模式便是「先…

1688 API接口的介绍丨商品详情页接口丨搜索商品列表接口

1688&#xff0c;作为中国领先的B2B电子商务平台&#xff0c;为全球的买家和卖家提供了一站式的采购和销售服务。而它的API接口&#xff0c;更是开放了1688平台的核心功能&#xff0c;让开发者能够根据自己的需求来定制和扩展商业应用。 1688 API接口的介绍 1688 API接口提供…

初刷leetcode题目(11)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

ntopng如何将漏洞扫描与流量监控相结合,以提高网络安全性

来源&#xff1a;艾特保IT 虹科干货 | ntopng如何将漏洞扫描与流量监控相结合&#xff0c;以提高网络安全性 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; ntopng为人所知的“身份”是被动流量监控。然而&#xff0c;如今的ntopng6.0也进化出主动监控功能来&#xf…

正则表达式及文本三剑客grep,awk,sed

目录 正则表达式 前瞻 代表字符 表示次数 位置锚定 分组或其他 grep 选项 范例 awk 前瞻 awk常见的内置变量 范例 sed 前瞻 sed格式 范例 搜索替代 格式 范例 分组后项引用 格式 范例 正则表达式 前瞻 通配符&#xff1a;匹配的是文件名 正则表达式&a…

【带头学C++】----- 八、C++面向对象编程 ---- 8.8 内联函数 inline

目录 8.8 内联函数 inline 8.8.1 声明内联函数 8.8.2 宏函数与内联函数的区别 8.8.3 使用内联函数需注意 8.9 函数重载 8.9.1 什么是函数重载 8.9.2 函数重载的条件 8.9.3 函数重载底层原理是如何实现的&#xff1f; 8.8 内联函数 inline 在C中&#xff0c;inline是一个…

docker镜像管理命令

镜像管理命令 docker build : 命令用于使用 Dockerfile 创建镜像 docker build [OPTIONS] PATH | URL | - OPTIONS说明&#xff1a; --add-host :向hosts文件中添加自定义 host:ip 映射 --build-arg[] :设置镜像创建时的变量&#xff1b; --cache-from :指定镜像用作当前构建…

今日份推荐、无广告、超实用的5款软件

​ 大家好&#xff0c;我又来啦&#xff0c;今天给大家带来的几款软件&#xff0c;共同特点都是无广告、超实用&#xff0c;大家观看完可以自行搜索下载哦。 1.键盘锁定工具——Iwck ​ Iwck是一款简单实用的键盘锁定工具&#xff0c;可以让你在需要的时候暂时停止键盘的所有…

P27 C++this 关键字

目录 前言 01 this关键字的引入 02 this关键字 前言 本章的主题是 C 中的 this 关键字。 以前第一次学qt的时候就遇到了this关键字&#xff0c;那时候还不是很会C&#xff0c;所以有点懵&#xff0c;现在我们就来讲解以下C中的this关键字 C 中有一个关键字 this&#xff0…

dockerfile文件:copy和add 异同

相同点&#xff1a; 复制文件或目录&#xff1a; 无论是 COPY 还是 ADD 都可以将文件或目录从构建上下文复制到容器中。支持源路径和目标路径&#xff1a; 两者都需要指定源路径和目标路径&#xff0c;用于指定要复制的文件或目录在主机上的位置以及在容器中的目标路径。 不同…

新生儿脐带护理的全面指南

引言&#xff1a; 新生儿脐带护理是父母在宝宝刚刚来到这个世界时面临的一项重要任务。正确的护理有助于预防感染&#xff0c;促进脐带迅速脱落&#xff0c;确保宝宝的健康。本文将深入探讨新生儿脐带护理的注意事项&#xff0c;为父母提供详尽的指南&#xff0c;以确保这个过…
最新文章