Course1-Week3-分类问题

Course1-Week3-分类问题

文章目录

  • Course1-Week3-分类问题
    • 1. 逻辑回归
      • 1.1 线性回归不适用于分类问题
      • 1.2 逻辑回归模型
      • 1.3 决策边界
    • 2. 逻辑回归的代价函数
    • 3. 实现梯度下降
    • 4. 过拟合与正则化
      • 4.1 线性回归和逻辑回归中的过拟合
      • 4.2 解决过拟合的三种方法
      • 4.3 正则化
      • 4.4 用于线性回归的正则方法
      • 4.5 用于逻辑回归的正则方法

  • 笔记主要参考B站视频“(强推|双字)2022吴恩达机器学习Deeplearning.ai课程”。
  • 本篇笔记对应课程 Course1-Week3(下图中深紫色)。

1. 逻辑回归

1.1 线性回归不适用于分类问题

概念明晰:

  • 本课程中,class/category两者都表示“分类问题”的输出类别,两者意义相同。
  • “逻辑回归(logistic regression)算法”用来解决“分类问题(classfication)”。这是历史遗留的命名问题。

  本周将学习“分类问题”,其 输出为有限取值,而不是某段范围内无限的数字。若分类问题的输出结果只有两种可能的分类/类别(class/category),就被称为“二元分类(binary classfication)”,比如下面的三个问题:

  • 是否为垃圾邮件?(0/1)
  • 是否为交易欺诈?(0/1)
  • 是否为恶性肿瘤?(0/1)下图与Week1“肿瘤分类”示意图的不同,仅在于下图画出了实际的纵轴。

惯例:0表示“否”,1表示“是”。0/1 只有 否定/肯定 含义,并不具有褒贬含义。

图1-3-1 肿瘤分类问题示意图

  若我们采用前面学过的“线性回归”,对于特定的训练集(没有最右侧样本),看起来是合理的。因为此时以0.5作为阈值,其与样本拟合线(蓝色)相交在横轴上的点,便可以作为一个边界(蓝色),边界左侧都是良性(0),边界右侧都是恶性(1)。但此时额外添加一个最右侧的样本,显然拟合线(绿色)和横轴上的边界(绿色)都和预期不符:

图1-3-2 “线性回归”无法解决肿瘤分类问题
  • 决策边界(decision boundary):横轴上的边界。

  总的来说,有时候可以很幸运地使用“线性回归”解决“分类问题”,但大多数情况下都不行,线性拟合不适用于分类问题。于是下面将介绍“逻辑回归(logistic regression)”,来解决分类问题,这也是一种当今被广泛使用的算法。

1.2 逻辑回归模型

弹幕注:“逻辑回归”在西瓜书上被写作“对数几率回归”。

  “逻辑回归”是一种当今被广泛使用的算法,比如生活中的“精准广告投放”算法,老师说他在工作中也经常用。“逻辑回归(logistic regression)”使用S型曲线来进行函数拟合,最常见的S型曲线就是 Sigmoid function,其也被称为 logistic function:

图1-3-3 “逻辑回归”和Sigmoid函数

Sigmoid函数 g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1,其性质为:

  • 0 < g ( z ) < 1 0 < g(z) < 1 0<g(z)<1
  • g ( 0 ) = 0.5 g(0)=0.5 g(0)=0.5
  • z z z 越大, g ( z ) g(z) g(z) 越接近1; z z z 越小, g ( z ) g(z) g(z) 越接近0。

只要根据样本的散点图,选择不同的方式对 z z z 拟合(见下一小节),就可以解决各种各样的分类问题。比如在“肿瘤分类问题”中,令 z z z 为一条直线 z = w ⃗ ⋅ x ⃗ + b z=\vec{w}·\vec{x}+b z=w x +b,并将其代入到Sigmoid函数中,便可得到“(多元)逻辑回归算法”的数学模型:
Logistic regression model assume    z = w ⃗ ⋅ x ⃗ + b : f w ⃗ , b ( x ⃗ ) = g ( z ) = g ( w ⃗ ⋅ x ⃗ + b ) = 1 1 + e − ( w ⃗ ⋅ x ⃗ + b ) \begin{aligned} \text{Logistic regression model}\\ \text{assume} \; z = \vec{w}·\vec{x}+b \end{aligned} : \quad f_{\vec{w},b}(\vec{x}) = g(z) = g(\vec{w}·\vec{x}+b) = \frac{1}{1+e^{-(\vec{w}·\vec{x}+b)}} Logistic regression modelassumez=w x +b:fw ,b(x )=g(z)=g(w x +b)=1+e(w x +b)1

  对于使用Sigmoid函数构建的“逻辑回归”的数学模型来说,输入相应的特征或特征集,就会输出一个0~1之间的数字,这个输出可以认为是 y = 1 y=1 y=1 的“概率(probability)”: f w ⃗ , b ( x ⃗ ) = P ( y = 1 ∣ x ⃗ ; w ⃗ , b ) f_{\vec{w},b}(\vec{x}) = P(y=1|\vec{x};\vec{w},b) fw ,b(x )=P(y=1∣x ;w ,b)。也就是,在给定参数 w ⃗ \vec{w} w b b b、输入 x ⃗ \vec{x} x 的情况下,其输出 y = 1 y=1 y=1 的概率。比如对于上述“肿瘤分类问题”来说,输出的数字就表示“为恶性肿瘤的概率 P ( 1 ) P(1) P(1)”,若输出0.7,则表示该模型认为有70%的可能是恶性肿瘤(30%的可能不是恶性肿瘤)。

1.3 决策边界

  前面提到,“逻辑回归”的输出表示“输出为1的概率”。那么很自然的便想到,我们应当选取一个“阈值”,当输出概率大于这个“阈值”时,就可以认为输出结果为1,这个“阈值”就是“决策边界(decision boundary)”。显然,最直观的决策边界就是选取 g ( z ) = 0.5 g(z)=0.5 g(z)=0.5,也就是:
f w ⃗ , b ( x ⃗ ) = g ( z ) ≥ 0.5 ⟹ y ^ = 1 f w ⃗ , b ( x ⃗ ) = g ( z ) < 0.5 ⟹ y ^ = 0 \begin{aligned} & f_{\vec{w},b}(\vec{x}) = g(z) \ge 0.5 \Longrightarrow \hat{y}=1\\ & f_{\vec{w},b}(\vec{x}) = g(z) < 0.5 \Longrightarrow \hat{y}=0 \end{aligned} fw ,b(x )=g(z)0.5y^=1fw ,b(x )=g(z)<0.5y^=0

“决策边界”的形状则由 z z z 决定,令 z = w ⃗ ⋅ x ⃗ + b z=\vec{w}·\vec{x}+b z=w x +b,决策边界便为一条直线;令 z z z 为更高阶的多项式,则可以得到形状更复杂的决策边界,这便是“逻辑回归”可以学习相当复杂的数据集的奥妙所在。下面是两个示例:

示例1:决策边界为直线
本分类问题令 z = w 1 x 1 + w 2 x 2 + b z=w_1x_1+w_2x_2+b z=w1x1+w2x2+b,假设其参数 w 1 = w 2 = 1 , b = − 3 w_1=w_2=1,b=-3 w1=w2=1,b=3、决策边界为 g ( z ) = 0.5 g(z)=0.5 g(z)=0.5,于是经过移项可得到决策边界为 x 1 + x 2 = 3 x_1+x_2=3 x1+x2=3(下图紫色直线),决策边界的下方认为是0、上方认为是1,符合直观:

图1-3-4 两特征的分类问题——决策边界为直线
  • x 1 x_1 x1 x 2 x_2 x2表示两种输入特征,红叉表示正向示例(1),蓝圈表示反向示例(0)。

示例2:决策边界为圆
本分类问题令 z = w 1 x 1 2 + w 2 x 2 2 + b z=w_1x_1^2+w_2x_2^2+b z=w1x12+w2x22+b,假设其参数 w 1 = w 2 = 1 , b = − 1 w_1=w_2=1,b=-1 w1=w2=1,b=1、决策边界为 g ( z ) = 0.5 g(z)=0.5 g(z)=0.5,于是经过移项可得到决策边界为 x 1 2 + x 2 2 = 1 x_1^{2}+x_2^{2}=1 x12+x22=1(下图紫色圆),决策边界的内部认为是0、外部认为是1,符合直观:

图1-3-5 两特征的分类问题——决策边界为曲线
  • x 1 x_1 x1 x 2 x_2 x2表示两种输入特征,红叉表示正向示例(1),蓝圈表示反向示例(0)。
  • 平方拟合是因为要构建圆形的方程。

本节 Quiz

  1. Which is an example of a classification task?
    × Based on a patient’s blood pressure, determine how much blood pressure medication (a dosage measured in milligrams) the patient should be prescribed.
    √ Based on the size of each tumor, determine if each tumor is malignant (cancerous) or not.
    × Based on a patient’s age and blood pressure, determine how much blood pressure medication (measured in milligrams) the patient should be prescribed.

  2. Recall the sigmoid function is g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1. If z z z is a large positive number, then:
    × g ( z ) g(z) g(z) is near negative one (-1).
    × g ( z ) g(z) g(z) will be near zero (0).
    g ( z ) g(z) g(z) is near one (1).
    × g ( z ) g(z) g(z) will be near 0.5.

  3. A cat photo classification model predicts 1 if it’s a cat, and 0 ifit’s not a cat. For a particular photograph, the logistic regression model outputs g ( z ) g(z) g(z) (a number between 0 and 1). Which of these would be a reasonable criteria to decide whether to predict if it’s a cat?
    × Predictitis a cat if g ( z ) < 0.5 g(z) < 0.5 g(z)<0.5.
    × Predictitis a cat if g ( z ) = 0.5 g(z) = 0.5 g(z)=0.5.
    × Predictitis a cat if g ( z ) < 0.7 g(z) < 0.7 g(z)<0.7.
    √ Predictitis a cat if g ( 2 ) ≥ 0.5 g(2) \ge 0.5 g(2)0.5.

  4. No matter what features you use (including if you use polynomial features), the decision boundary learned by logistic regression will be a linear decision boundary.
    √ False
    × True

2. 逻辑回归的代价函数

概念明晰:

  • 本节中,单个样本使用“损失(loss)函数”,整个训练集使用“代价(cost)函数”。“代价”是所有样本“损失”的平均值。
  • 本课程中,若无特殊说明, l o g ( ⋅ ) log(·) log()函数 都默认对 自然常数 e e e 取对数,即 l o g ( ⋅ ) = l o g e ( ⋅ ) = l n ( ⋅ ) log(·) = log_e(·) = ln(·) log()=loge()=ln()

  和“线性回归”类似,给定“逻辑回归”的模型后,也要讨论一下“逻辑回归”的“代价函数”,用来衡量当前参数对于训练集的匹配程度。在“线性回归”中,我们使用“平方误差”来计算模型的代价函数,但对于“逻辑回归”问题来说,若也采用平方误差函数,那么它的代价函数就如同下图所示,是一个非凸函数,任意一个局部极小值都可能让梯度下降法收敛。显然,“平方误差”不能作为“逻辑回归”的代价函数

图1-3-6 平方误差函数不适用于逻辑回归问题

于是定义下面这种形式的 负对数形式的损失函数 L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)}) L(fw ,b(x (i)),y(i)),进而保证 代价函数 J ( w ⃗ , b ) J(\vec{w},b) J(w ,b) 在“逻辑回归”中为凸函数,进而在后续可以使用梯度下降法。下图也给出了使用负对数 − l o g -log log 作为损失函数的合理性:

Logistic loss function: L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = { − l o g ( f w ⃗ , b ( x ⃗ ( i ) ) ) ,    y ( i ) = 1 , − l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) ,    y ( i ) = 0. ⇓ Logistic cost function: J ( w ⃗ , b ) = 1 m ∑ i = 1 m L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) \begin{aligned} \text{Logistic loss function:}\quad & L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)})= \left\{\begin{aligned} -log(f_{\vec{w},b}(\vec{x}^{(i)})), \; &y^{(i)}=1,\\ -log(1-f_{\vec{w},b}(\vec{x}^{(i)})), \; &y^{(i)}=0. \end{aligned}\right.\\ & \Downarrow\\ \text{Logistic cost function:}\quad & J(\vec{w},b) = \frac{1}{m} \sum_{i=1}^{m}L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)}) \end{aligned} Logistic loss function:Logistic cost function:L(fw ,b(x (i)),y(i))={log(fw ,b(x (i))),log(1fw ,b(x (i))),y(i)=1,y(i)=0.J(w ,b)=m1i=1mL(fw ,b(x (i)),y(i))

  • L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)}) L(fw ,b(x (i)),y(i)):损失函数,表示单个训练样本 ( x ⃗ ( i ) , y ( i ) ) (\vec{x}^{(i)},y^{(i)}) (x (i),y(i)) 的损失。在“线性回归”中,损失函数为 1 2 ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) 2 \frac{1}{2}(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})^2 21(fw ,b(x (i))y(i))2,也就是该样本“平方差损失”的一半。在“逻辑回归”中,损失函数则如上所示。
  • 注意 0 < f w ⃗ , b ( x ⃗ ( i ) ) < 1 0 < f_{\vec{w},b}(\vec{x}^{(i)}) < 1 0<fw ,b(x (i))<1,所以负对数的形式,可以保证Sigmoid函数越贴近样本,代价越小
图1-3-7 逻辑损失函数的合理性
  • 预测模型 0 < f w ⃗ , b ( x ⃗ ( i ) ) < 1 0 < f_{\vec{w},b}(\vec{x}^{(i)}) < 1 0<fw ,b(x (i))<1
  • y ( i ) = 1 y^{(i)}=1 y(i)=1 时(上左图):预测值 f w ⃗ , b ( x ⃗ ( i ) ) f_{\vec{w},b}(\vec{x}^{(i)}) fw ,b(x (i)) 越接近1,损失越小甚至趋于0;越远离1,损失函数越大,并且损失的增长速度越来越快,甚至趋于无穷 ∞ \infty
  • y ( i ) = 0 y^{(i)}=0 y(i)=0 时(上右图):预测值 f w ⃗ , b ( x ⃗ ( i ) ) f_{\vec{w},b}(\vec{x}^{(i)}) fw ,b(x (i)) 越接近0,损失越小甚至趋于0;越远离0,损失函数越大,并且损失的增长速度越来越快,甚至趋于无穷 ∞ \infty

总结:预测值 f w ⃗ , b ( x ⃗ ( i ) ) f_{\vec{w},b}(\vec{x}^{(i)}) fw ,b(x (i)) 越接近真实值 y ( i ) y^{(i)} y(i),损失越小趋于0;越远离真实值 y ( i ) y^{(i)} y(i),损失迅速增大趋于 ∞ \infty

证明这里的损失函数是凸函数超出了本课范畴,我们只需知道上述逻辑回归的“损失函数”和“代价函数”都是凸函数,可以使用梯度下降法找到最小值处的参数值 w ⃗ \vec{w} w b b b。并且当前的“肿瘤分类问题”是一个“二元分类问题”, y ( i ) y^{(i)} y(i) 只能取0/1,所以“损失函数”和“代价函数”还可以进一步简化:

Simplified logistic loss function: L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = { − l o g ( f w ⃗ , b ( x ⃗ ( i ) ) ) ,    y ( i ) = 1 , − l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) ,    y ( i ) = 0. = − y ( i ) l o g ( f w ⃗ , b ( x ⃗ ( i ) ) ) − ( 1 − y ( i ) ) l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) ⇓ Simplified logistic cost function: J ( w ⃗ , b ) = 1 m ∑ i = 1 m L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( f w ⃗ , b ( x ⃗ ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) ] \begin{aligned} \text{Simplified logistic loss function:}\quad & \begin{aligned} L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)}) & = \left\{\begin{aligned} -log(f_{\vec{w},b}(\vec{x}^{(i)})), \; &y^{(i)}=1,\\ -log(1-f_{\vec{w},b}(\vec{x}^{(i)})), \; &y^{(i)}=0. \end{aligned}\right.\\ & = -y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))-(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)})) \end{aligned}\\ & \Downarrow \\ \text{Simplified logistic cost function:}\quad & \begin{aligned} J(\vec{w},b) &= \frac{1}{m} \sum_{i=1}^{m}L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)})\\ &= -\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))+(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)}))] \end{aligned} \end{aligned} Simplified logistic loss function:Simplified logistic cost function:L(fw ,b(x (i)),y(i))={log(fw ,b(x (i))),log(1fw ,b(x (i))),y(i)=1,y(i)=0.=y(i)log(fw ,b(x (i)))(1y(i))log(1fw ,b(x (i)))J(w ,b)=m1i=1mL(fw ,b(x (i)),y(i))=m1i=1m[y(i)log(fw ,b(x (i)))+(1y(i))log(1fw ,b(x (i)))]

并且从物理意义来讲,上述“代价函数”使用了统计学中“最大似然估计(maximum likehood estimation)”的原理。这只是个特定的代价函数,当然还有其他无数种代价函数

本节Quiz

  1. In this lecture series, “cost” and “Ioss” have distinct meanings. Which one applies to a single training example?
    √ Loss
    × Cost
    × Both Loss and Cost
    × Neither LOss nor Cost

  2. For the simplified loss function, if the label y ( i ) = 0 y^{(i)} = 0 y(i)=0, then what does this expression simplify to?
    × l o g ( 1 − f w ⃗ , b ( x ( i ) ) + l o g ( 1 − f w ⃗ , b ( x ( i ) ) ) log(1 - f_{\vec{w},b}(x^{(i)}) + log(1 - f_{\vec{w},b}(x^{(i)})) log(1fw ,b(x(i))+log(1fw ,b(x(i)))
    × l o g ( f w ⃗ , b ( x ( i ) ) ) log(f_{\vec{w},b}(x^{(i)})) log(fw ,b(x(i)))
    l o g ( 1 − f w ⃗ , b ( x ( i ) ) ) log(1 - f_{\vec{w},b}(x^{(i)})) log(1fw ,b(x(i)))
    × − l o g ( 1 − f w ⃗ , b ( x ( i ) ) ) − l o g ( 1 − f w ⃗ , b ( x ( i ) ) ) -log(1- f_{\vec{w},b}(x^{(i)})) - log(1- f_{\vec{w},b}(x^{(i)})) log(1fw ,b(x(i)))log(1fw ,b(x(i)))

3. 实现梯度下降

  于是,对上一节给出的“代价函数”进行梯度下降,我们便可以完成整个“逻辑回归”,进而找到最合适的参数 w ⃗ \vec{w} w b b b。下面GIF动图给出了“逻辑回归”的完整流程。注意,“逻辑回归”中梯度下降法的表达式仍然和“线性回归”一样(计算上的巧合):
Logistic regression model : f w ⃗ , b ( x ⃗ ) = 1 1 + e − ( w ⃗ ⋅ x ⃗ + b ) Logistic cost function : min ⁡ w ⃗ , b J ( w ⃗ , b ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( f w ⃗ , b ( x ⃗ ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) ] Gradient descent repeat until convergence : { j = 1 , 2 , . . . , n . w j = w j − α ∂ ∂ w j J ( w ⃗ , b ) = w j − α m ∑ i = 1 m [ ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) ⋅ x ⃗ j ( i ) ] , b = b − α ∂ ∂ b J ( w ⃗ , b ) = b − α m ∑ i = 1 m ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) . \begin{aligned} \text{Logistic regression model} &: \quad f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}·\vec{x}+b)}}\\ \text{Logistic cost function} &: \quad \min_{\vec{w},b} J(\vec{w},b) = -\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))+(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)}))]\\ \begin{aligned} \text{Gradient descent} \\ \text{repeat until convergence} \end{aligned} &: \left\{\begin{aligned} j &= 1,2,...,n.\\ w_j &= w_j - \alpha \frac{\partial }{\partial w_j} J(\vec{w},b) = w_j - \frac{\alpha}{m} \sum_{i=1}^{m}[(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})·\vec{x}^{(i)}_j], \\ b &= b - \alpha \frac{\partial }{\partial b} J(\vec{w},b) = b - \frac{\alpha}{m} \sum_{i=1}^{m}(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)}). \end{aligned}\right. \end{aligned} Logistic regression modelLogistic cost functionGradient descentrepeat until convergence:fw ,b(x )=1+e(w x +b)1:w ,bminJ(w ,b)=m1i=1m[y(i)log(fw ,b(x (i)))+(1y(i))log(1fw ,b(x (i)))]: jwjb=1,2,...,n.=wjαwjJ(w ,b)=wjmαi=1m[(fw ,b(x (i))y(i))x j(i)],=bαbJ(w ,b)=bmαi=1m(fw ,b(x (i))y(i)).

图1-3-8 逻辑回归的梯度下降过程

上图见课程资料:C1_W3_Lab06_Gradient_Descent_Soln
bug1:使用魔术命令%matplotlib widget,无法显示图,无法交互。
解决办法1:改成%matplotlib inline,可以将静态图显示出来,但是无法交互。
解决方法2:更新库conda update matplotlib

当然,和“线性回归”类似,在“逻辑回归”中,也可以使用前面提到的概念来进一步优化梯度下降法:

  1. 使用“学习曲线”,监视梯度下降法的过程。
  2. 使用“向量化”加速代码运行效率。
  3. 使用“特征缩放”加速梯度下降法的收敛速度。

本节 Quiz

  1. Which is the correct update step for?
    √ The update steps look like the update steps for linear regression, but the definition of f w ⃗ , b ( x ( i ) ) f_{\vec{w},b}(x^{(i)}) fw ,b(x(i)) is different.
    × The update steps are identical to the update steps for linear regression.

4. 过拟合与正则化

  现在已经学完“线性回归”和“逻辑回归”了,并且也介绍了“学习曲线”、“向量化”、“特征缩放”等一系列加速算法的方法。但是当梯度下降法迭代完成后,还有一类特殊的情况没有介绍,那就是“过拟合(overfitting)”和“欠拟合(underfitting)”。本节将介绍这两个概念,并介绍解决这类问题的方法——“正则化(regularization)”。

概念明晰:

  • Underfit”和“High bias”都表示欠拟合;“Overfit”和“High variance”都表示过拟合。

4.1 线性回归和逻辑回归中的过拟合

下面给出了“房价预测”、“肿瘤分类”两种问题中的“过拟合/欠拟合”情况:

图1-3-9 回归问题中的欠拟合、恰当、过拟合
  • 欠拟合/高偏差:特征太少,甚至都不能很好的拟合训练集。“高偏差”有两层含义,一方面是拟合线和训练集的偏差很大;另一方面是因为我们先入为主的使用直线拟合,这本身与实际情况就是一种很大的偏差。
  • just right:恰到好处!没有特别的术语描述这种情况。但即使对于一个全新的输入,也可以给出恰当的输出,于是称这样的模型具有很好的“泛化(generazilization)”特性。
  • 过拟合/高方差:有太多的特征,可以完美的拟合数据集。但对于全新的输入,并不能给出恰当的输出。甚至训练集稍微变化一点点,都会拟合出完全不一样的曲线,也就是“高方差”。

注:“Underfit”和“High bias”都表示欠拟合;“Overfit”和“High variance”都表示过拟合。

图1-3-10 分类问题中的欠拟合、恰当、过拟合
  • 欠拟合/高偏差:决策边界是一条直线,看起来还行,但显然没有很好的学习到训练集。
  • just right:决策边界是椭圆或椭圆的一部分,较好的拟合了数据,虽然并不是完美符合所有的训练数据。
  • 过拟合/高方差:决策边界非常扭曲,以图完美符合所有的训练数据,但显然并不具有泛化特性。

4.2 解决过拟合的三种方法

后续课程会介绍如何避免算法出错,并且介绍用于识别 欠拟合/过拟合 的工具,但现在先只介绍如何解决过拟合:

  1. 扩大训练集:此时即使有很多特征,相比于训练集很小时,其拟合曲线也会相对平滑。缺点是不一定能获取更多的训练数据。
  2. 减少特征数:也称为“特征选择”。“特征选择”除了靠直觉,在Course2中也会介绍一种自动选择特征的方法。缺点是有可能会丢弃有用特征。
  3. 正则化(regularization):保留所有的特征,但对于某个很大的特征 x j x_j xj,减小其参数 w j w_j wj(通常不会调整参数 b b b)。老师一直在用这个方法。
图1-3-11 解决过拟合的三种方法

4.3 正则化

  本节将具体介绍如何进行“正则化”。将会改进代价函数,来将其应用于“正则化”的本质就是改进代价函数,添加新的“正则项(regularization term)”,用于控制参数的大小:
Modified cost function: J ( w ⃗ , b ) = 1 m ∑ i = 1 m L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) ⏟ original cost + λ 2 m ∑ j = 1 n w j 2 ⏟ regularization term + λ 2 m b 2 ⏟ no use ,    λ > 0. \text{Modified cost function:} \quad J(\vec{w},b) = \underbrace{\frac{1}{m} \sum_{i=1}^{m}L(f_{\vec{w},b}(\vec{x}^{(i)}),y^{(i)})}_{\text{original cost}} + \underbrace{\frac{\lambda}{2m}\sum_{j=1}^{n}w_j^2}_{\text{regularization term}} + \underbrace{\frac{\lambda}{2m}b^2}_{\text{no use}}, \; \lambda >0. Modified cost function:J(w ,b)=original cost m1i=1mL(fw ,b(x (i)),y(i))+regularization term 2mλj=1nwj2+no use 2mλb2,λ>0.

  • λ \lambda λ:正则化参数(regularization parameter)。 λ = 0 \lambda=0 λ=0 时,没有正则化,此时模型会尽可能完美拟合数据(可能“过拟合”);随着 λ \lambda λ 增大,所有的 w j w_j wj 都会减小,拟合曲线会越平滑;但 λ \lambda λ 过大时,曲线会过于平滑,就会“欠拟合”。所以 λ \lambda λ 算是在平衡 “数据拟合” 和 “曲线平滑” 这两个目标
  • λ 2 m ∑ j = 1 n w j 2 \frac{\lambda}{2m}\sum_{j=1}^{n}w_j^2 2mλj=1nwj2:正则项(regularization term)。分母中的 “ m m m” 是为了消除样本个数对于正则化效果的影响,而由于参数是平方项,分母中的 “ 2 2 2” 则是为了使代价函数偏导更加简洁。
  • λ 2 m b 2 \frac{\lambda}{2m}b^2 2mλb2:有些工程师会在代价函数后加上对参数 b b b 的惩罚项,但实际上并不会有什么帮助。

可见“正则化”主要用于 解决“过拟合”,其作用是 使 所有 参数 同时 增大或减小,但不同参数的变化速度不同。相比于范围较小的特征,“正则化”对于范围较大的特征的参数影响更大,也就起到了调节曲线平滑程度的作用。

4.4 用于线性回归的正则方法

Linear regression model : f w ⃗ , b ( x ⃗ ) = w ⃗ ⋅ x ⃗ + b Linear cost function : min ⁡ w ⃗ , b J ( w ⃗ , b ) = 1 2 m ∑ i = 1 m ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 1 n w j 2 Gradient descent repeat until convergence : { j = 1 , 2 , . . . , n . w j = w j − α ∂ ∂ w j J ( w ⃗ , b ) = w j − α m ( ∑ i = 1 m [ ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) ⋅ x j ( i ) ] + λ w j ) ,    b = b − α ∂ ∂ b J ( w ⃗ , b ) = b − α m ∑ i = 1 m ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) . \begin{aligned} \text{Linear regression model} &: \quad f_{\vec{w},b}(\vec{x}) = \vec{w}·\vec{x} + b\\ \text{Linear cost function} &: \quad \min_{\vec{w},b} J(\vec{w},b) = \frac{1}{2m} \sum_{i=1}^{m}(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})^2 + \frac{\lambda}{2m}\sum_{j=1}^{n}w_j^2\\ \begin{aligned} \text{Gradient descent} \\ \text{repeat until convergence} \end{aligned} &: \left\{\begin{aligned} j &= 1,2,...,n. \\ w_j &= w_j - \alpha \frac{\partial }{\partial w_j} J(\vec{w},b) = w_j - \frac{\alpha}{m} \left( \sum_{i=1}^{m}[(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})·x^{(i)}_j] + \lambda w_j \right),\; \\ b &= b - \alpha \frac{\partial }{\partial b} J(\vec{w},b) = b - \frac{\alpha}{m} \sum_{i=1}^{m}(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)}).\\ \end{aligned}\right. \end{aligned} Linear regression modelLinear cost functionGradient descentrepeat until convergence:fw ,b(x )=w x +b:w ,bminJ(w ,b)=2m1i=1m(fw ,b(x (i))y(i))2+2mλj=1nwj2: jwjb=1,2,...,n.=wjαwjJ(w ,b)=wjmα(i=1m[(fw ,b(x (i))y(i))xj(i)]+λwj),=bαbJ(w ,b)=bmαi=1m(fw ,b(x (i))y(i)).

下面来进一步分析参数的更新过程(同样也适用于“逻辑回归”中的正则方法):
w j = w j − α m ( ∑ i = 1 m [ ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) ⋅ x j ( i ) ] + λ w j ) = ( 1 − α λ m ) ⏟ shrink    w j w j − α m ∑ i = 1 m [ ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) ⋅ x j ( i ) ] ⏟ usual update \begin{aligned} w_j &= w_j - \frac{\alpha}{m} \left( \sum_{i=1}^{m}[(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})·x^{(i)}_j] + \lambda w_j \right)\\ &= \underbrace{(1-\alpha \frac{\lambda}{m})}_{\text{shrink} \; w_j}w_j - \underbrace{\frac{\alpha}{m}\sum_{i=1}^{m}[(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})·x^{(i)}_j]}_{\text{usual update}} \end{aligned} wj=wjmα(i=1m[(fw ,b(x (i))y(i))xj(i)]+λwj)=shrinkwj (1αmλ)wjusual update mαi=1m[(fw ,b(x (i))y(i))xj(i)]

  • 第一项:添加正则化后,会在每次迭代过程中,都使参数 w j w_j wj 乘以一个略小于1的常数。
  • 第二项:对于非正则化线性回归,正常的梯度下降法更新过程。

4.5 用于逻辑回归的正则方法

Logistic regression model : f w ⃗ , b ( x ⃗ ) = 1 1 + e − ( w ⃗ ⋅ x ⃗ + b ) Logistic cost function : min ⁡ w ⃗ , b J ( w ⃗ , b ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( f w ⃗ , b ( x ⃗ ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) ] + λ 2 m ∑ j = 1 n w j 2 , Gradient descent repeat until convergence : { j = 1 , 2 , . . . , n . w j = w j − α ∂ ∂ w j J ( w ⃗ , b ) = w j − α m ( ∑ i = 1 m [ ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) ⋅ x j ( i ) ] + λ w j ) , b = b − α ∂ ∂ b J ( w ⃗ , b ) = b − α m ∑ i = 1 m ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) . \begin{aligned} \text{Logistic regression model} &: \quad f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}·\vec{x}+b)}}\\ \text{Logistic cost function} &: \quad \min_{\vec{w},b} J(\vec{w},b) = -\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}log(f_{\vec{w},b}(\vec{x}^{(i)}))+(1-y^{(i)})log(1-f_{\vec{w},b}(\vec{x}^{(i)}))] \\ & \qquad\qquad\qquad\qquad + \frac{\lambda}{2m}\sum_{j=1}^{n}w_j^2,\\ \begin{aligned} \text{Gradient descent} \\ \text{repeat until convergence} \end{aligned} &: \left\{\begin{aligned} j &= 1,2,...,n. \\ w_j &= w_j - \alpha \frac{\partial }{\partial w_j} J(\vec{w},b) = w_j - \frac{\alpha}{m} \left( \sum_{i=1}^{m}[(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)})·x^{(i)}_j] + \lambda w_j \right), \\ b &= b - \alpha \frac{\partial }{\partial b} J(\vec{w},b) = b - \frac{\alpha}{m} \sum_{i=1}^{m}(f_{\vec{w},b}(\vec{x}^{(i)})-y^{(i)}). \end{aligned}\right. \end{aligned} Logistic regression modelLogistic cost functionGradient descentrepeat until convergence:fw ,b(x )=1+e(w x +b)1:w ,bminJ(w ,b)=m1i=1m[y(i)log(fw ,b(x (i)))+(1y(i))log(1fw ,b(x (i)))]+2mλj=1nwj2,: jwjb=1,2,...,n.=wjαwjJ(w ,b)=wjmα(i=1m[(fw ,b(x (i))y(i))xj(i)]+λwj),=bαbJ(w ,b)=bmαi=1m(fw ,b(x (i))y(i)).

本节Quiz

  1. Which of the following can address overfitting?
    √ Collect more training data.
    × Remove a random set of training examples.
    √ Apply regularization.
    √ Select a subset of the more relevant features.

  2. You fit logistic regression with polynomial features to a dataset, and your model looks like this. What would you conclude? (Pick one)
    × The model has high bias (underfit). Thus, adding data is likely to help.
    √ The model has high variance (overfit). Thus, adding data is likely to help.
    × The model has high bias (underfit). Thus, adding data is, by itself, unlikely to help much.
    × The model has high variance (overfit). Thus, adding data is, by itself, unlikely to help much.

  3. Suppose you have a regularized linear regression model. If you increase the regularization parameter λ \lambda λ, what do you expect to happen to the parameters w 1 , w 2 , . . . , w n w_1, w_2, ..., w_n w1,w2,...,wn?
    √ This will reduce the size of the parameters w 1 , w 2 , . . . , w n w_1, w_2, ..., w_n w1,w2,...,wn.
    × This will increase the size of the parameters w 1 , w 2 , . . . , w n w_1, w_2, ..., w_n w1,w2,...,wn.

注:C1_W3_Logistic_Regression包括了逻辑回归、正则化逻辑回归的练习题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/206602.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

知识图谱最简单的demo实现——基于pyvis

1、前言 我们在上篇文章中介绍了知识图谱的简单实现&#xff0c;最后使用neo4j进行了展示&#xff0c;对于有些情况我们可能并不想为了查看知识图的结果再去安装一个软件去实现&#xff0c;那么我们能不能直接将三元组画出来呢/ 接下来我们就介绍一个可视化的工具pyvis&#…

Python 2 和 Python 3 的区别

Python 2 和 Python 3 之间有很多重要的区别&#xff0c;特别是在处理编码、字符串和类方面的区别。Python 2和Python 3的主要区别包括以下几点&#xff1a; Unicode处理&#xff1a;Python 2有专门的Unicode字符串类型&#xff08;例如&#xff0c;u"string"&#…

Linux中的fork()函数的面试题目

1.面试题目1 (1)fork 以后&#xff0c;父进程打开的文件指针位置在子进程里面是否一样&#xff1f;(先open再fork) (2)能否用代码简单的验证一下? (3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样&#xff1f;能否用代码简单验证一…

Go 指针

一、关于指针 要搞明白Go语言中的指针需要先指定3个概念&#xff1a;指针地址、指针类型、指针取值 指针地址(&a)指针取值(*&a) 指针类型&#xff08;&a&#xff09; —> *int 改变数据传指针 变量的本质是给存储数据的内存地址起了一个好记的别名 比如我们…

mockito加junit gd 单元测试 笔记

目录 一、简介1.1 单元测试的特点1.2 mock类框架使用场景1.3 常用mock类框架1.3.1 mockito1.3.2 easymock1.3.3 powermock1.3.4 JMockit 二、mockito的单独使用2.1 mock对象与spy对象2.2 初始化mock/spy对象的方式2.3 参数匹配2.4 方法插桩2.5 InjectMocks注解的使用断言工具 三…

CentOS7.5搭建Hadoop-3.3.6集群的详细操作流程-实操版本

一、准备工作 1、安装 VMware&#xff0c;已安装的&#xff0c;跳过此步骤即可 官方正版VMware下载&#xff08;16 pro&#xff09;&#xff1a;https://www.aliyundrive.com/s/wF66w8kW9ac 安装&#xff1a;选一下安装地址&#xff0c;一直下一步即可。&#xff08;可能会要…

中职组网络安全-Windows操作系统渗透测试 -20221219win(环境+解析)

B-4:Windows操作系统渗透测试 任务环境说明: 服务器场景:20221219win 服务器场景操作系统:Windows(版本不详)(封闭靶机) 1.通过本地PC中渗透测试平台Kali对服务器场景Server08进行系统服务及版本扫描渗透测试,并将该操作显示结果中1433端口对应的服务版本信息作为F…

leetcode-142-环形链表(C语言实现)

题目&#xff1a; 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评…

力扣:182. 查找重复的电子邮箱(Python3)

题目&#xff1a; 表: Person ---------------------- | Column Name | Type | ---------------------- | id | int | | email | varchar | ---------------------- id 是该表的主键&#xff08;具有唯一值的列&#xff09;。 此表的每一行都包含一封电子…

Kubernetes 安全最佳实践:保护您的秘密

Kubernetes 是一个可用于微服务的开源容器编排平台。当我们想要部署容器化应用程序、自动化管理和扩展应用程序时&#xff0c;Kubernetes 非常有用。 在容器中运行单个微服务而不是在同一虚拟机中运行多个进程几乎总是更安全。每当我们在 Kubernetes 中启动任何 pod 时&#x…

力扣11题 盛最多水的容器 双指针算法

11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明 你不能倾斜容器. 示…

AI - Steering behaviorsII(碰撞避免,跟随)

Steering Behaviors系统中的碰撞避免&#xff0c;路径跟随&#xff0c;队长跟随 Collision Avoid 在物体前进的方向&#xff0c;延伸一定长度的向量进行检测。相当于物体对前方一定可使范围进行检测障碍物的碰撞 延伸的向量与碰撞物圆心的距离小于碰撞物的半径&#xff0c;则…

Maven的安装和使用

Maven是一个基于项目对象模型&#xff08;POM&#xff09;&#xff0c;可以管理项目构建、依赖管理、项目报告等的工具&#xff0c;使构建Java项目更容易。可以说Maven是一个项目管理和构建工具&#xff0c;它可以从管理项目的角度出发&#xff0c;将开发过程中的需求纳入进来&…

解密性能测试:深入剖析性能问题的步骤!

前言 性能测试大致分以下几个步骤&#xff1a; 需求分析脚本准备测试执行结果整理问题分析 今天要说的是最后一个步骤——“问题分析”&#xff1b; 需求描述 有一个服务&#xff0c;启动时会加载一个1G的词表文件到内存&#xff0c;请求来了之后&#xff0c;会把请求词去…

优化-查询数据接口太慢

有一个查询接口&#xff0c;主业务表有几万多条数据&#xff0c;没超过十万&#xff0c;由于没有使用分页&#xff0c;所以每次查询都要返回大几万的数据&#xff0c;然后问题是前端页面查询数据显示数据要转很久。 压缩响应体大小 我发现查询的时间是1秒多&#xff0c;但是浏…

基于STC12C5A60S2系列1T 8051单片机的液晶显示器LCD1602显示整数、小数应用

基于STC12C5A60S2系列1T 8051单片机的液晶显示器LCD1602显示整数、小数应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍液晶显示器LCD1602简单介绍IIC通信简单介绍…

Android UiAutoMatorViewer打不开

UIAutoMatorViewer是个很好用的工具&#xff0c;能解析出任意手机页面的UI树&#xff0c;非常方便。 工具位置&#xff1a;SDK\tools\bin\uiautomatorviewer.bat 一般双击就能打开。 但有时会打不开&#xff0c;双击后无反应&#xff0c;在cmd窗口中运行也是如此。 这种情况…

python用YOLOv8对图片进行分类

用yolov8的模型进行分类 先上效果图 图片资源 模型下载地址 https://github.com/ultralytics/ultralytics 代码 import matplotlib.pyplot as plt from ultralytics import YOLO from PIL import Image import cv2model YOLO(../ultralytics/yolov8n.pt)# print(model…

【NodeJS】 API Key 实现 短信验证码功能

这里使用的平台是 短信宝整体来讲还是挺麻烦的平台必须企业才行&#xff0c;个人是无法使用该平台的 平台必须完成 身份信息认证 和 企业认证 这里就需要 “营业执照”了 &#xff0c;没有 “营业执照” 的朋友还是后退一步吧 后端我用的是NodeJS &#xff0c;使用第三方库 ro…

连接mysql 出现can‘t connect to server on ‘localhost‘ (10061) 报错

首先确保你自己已经安装了mysql。 如果安装了mysql 还是有问题。我们可以在 任务管理器 》服务 中找Mysql服务。 如果有Mysql 服务&#xff0c;启动服务即可。 如果没有这个服务&#xff0c;需要我们下载服务。具体操作如下 管理员启动终端&#xff0c;找到安装的mysql &…
最新文章