模式识别与机器学习(七):集成学习

集成学习

  • 1.概念
    • 1.1 类型
    • 1.2 集成策略
    • 1.3 优势
  • 2. 代码实例
    • 2.1boosting
    • 2.2 bagging
    • 2.3 集成

1.概念

在这里插入图片描述

集成学习是一种机器学习方法,旨在通过组合多个个体学习器的预测结果来提高整体的预测性能。它通过将多个弱学习器(个体学习器)组合成一个强学习器,以获得更准确、更稳定的预测结果。

在集成学习中,个体学习器可以是同质的(使用相同的学习算法,但在不同的训练集上训练)或异质的(使用不同的学习算法)。集成学习的核心思想是通过个体学习器之间的合作和协同来提高整体的预测性能。
在这里插入图片描述

1.1 类型

集成学习可以分为两种主要类型:bagging和boosting。

  1. Bagging(自助聚集法):Bagging是一种基于自助采样的集成学习方法。它通过从原始训练集中有放回地随机采样生成多个新的训练集,然后使用这些训练集分别训练多个个体学习器。最后,通过对个体学习器的预测结果进行投票或平均来得到最终的集成预测结果。常见的Bagging方法包括随机森林(Random Forest)。

  2. Boosting(提升法):Boosting是一种迭代的集成学习方法。它通过依次训练多个个体学习器,每个个体学习器都试图纠正前一个学习器的错误。在每一轮迭代中,Boosting根据样本的权重调整训练集,使得前一个学习器预测错误的样本在后续的训练中得到更多的关注。最终,通过对个体学习器的加权组合来得到最终的集成预测结果。常见的Boosting方法包括AdaBoost、Gradient Boosting和XGBoost。

1.2 集成策略

集成策略是集成方法中用于合并个体学习器预测结果的策略。它决定了如何将个体学习器的预测结果组合起来得到最终的集成预测结果。下面是一些常见的集成策略:

  1. 投票(Voting):对于分类问题,投票是一种常见的集成策略。每个个体学习器对样本进行预测后,最终的预测结果是通过多数投票来决定的。例如,如果有5个个体学习器,其中3个预测为类别A,2个预测为类别B,则最终的预测结果为类别A。

  2. 平均(Averaging):对于回归问题,平均是一种常见的集成策略。每个个体学习器对样本进行预测后,最终的预测结果是通过对个体学习器的预测结果进行平均得到的。例如,如果有5个个体学习器,它们的预测结果分别为[1.2, 1.5, 1.3, 1.4, 1.6],则最终的预测结果为平均值1.4。

  3. 加权平均(Weighted Averaging):加权平均是一种对平均策略的扩展,它给不同的个体学习器赋予不同的权重。权重可以根据个体学习器的性能或其他因素进行分配。例如,性能较好的个体学习器可以被赋予更高的权重,从而在集成预测中起到更大的作用。

  4. 堆叠(Stacking):堆叠是一种更高级的集成策略,它通过训练一个元学习器来组合多个个体学习器的预测结果。在堆叠中,首先将训练集分成多个子集,每个子集用于训练不同的个体学习器。然后,使用这些个体学习器对测试集进行预测,并将它们的预测结果作为新的特征输入到元学习器中进行训练和预测。

这些集成策略可以根据具体的问题和需求进行选择和组合。不同的集成策略适用于不同的情况,可以根据个体学习器的性能、数据集的特点和任务的要求来选择最合适的集成策略。

1.3 优势

集成学习的优势在于它能够通过组合多个个体学习器的优势来弥补单个学习器的缺点,从而提高整体的泛化能力和鲁棒性。它在许多机器学习任务中都取得了很好的效果,并成为了一种常用的技术。

2. 代码实例

2.1boosting

Boosting是一种集成学习方法,通过迭代训练一系列基本学习器,每个基本学习器都会根据前一个学习器的表现进行调整,以提高整体性能。下面是Boosting的详细介绍:
在这里插入图片描述

  1. 基本概念:Boosting的核心思想是将多个弱学习器组合成一个强学习器。弱学习器是指在某个学习任务上表现略好于随机猜测的学习器,而强学习器则是在该任务上表现较好的学习器。

  2. 迭代过程:Boosting通过迭代的方式生成一系列基本学习器。每个基本学习器都会根据前一个学习器的表现进行调整,使得前一个学习器在错误样本上的权重增加,从而更加关注错误样本,提高整体性能。

  3. 加权投票:在预测阶段,Boosting会对每个基本学习器进行加权投票,将各个学习器的预测结果进行加权组合,得到最终的预测结果。通常,表现较好的学习器会被赋予更高的权重。

  4. AdaBoost算法:AdaBoost是Boosting的一种经典算法。它通过调整样本的权重来训练基本学习器,每个基本学习器的权重由前一个学习器的错误率决定。AdaBoost在每一轮迭代中,都会调整样本的权重,使得前一个学习器错误分类的样本权重增加,从而使得后续学习器更加关注这些错误样本。

  5. Gradient Boosting算法:Gradient Boosting是另一种常用的Boosting算法。它通过梯度下降的方式训练基本学习器,每个基本学习器都会拟合前一个学习器的残差。Gradient Boosting在每一轮迭代中,都会计算残差,并将残差作为新的目标进行训练。

Boosting是一种强大的集成学习方法,能够有效提高模型的性能。它在实际应用中广泛使用,如梯度提升树(Gradient Boosting Trees)和XGBoost等。
以下是一个使用Python中的scikit-learn库实现AdaBoost算法的简单代码示例:

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成一个示例数据集
X, y = make_classification(n_samples=100, n_features=10, random_state=42)

# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建AdaBoost分类器
clf = AdaBoostClassifier(n_estimators=50, random_state=42)

# 在训练集上拟合分类器
clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在这个示例中,我们首先使用make_classification函数生成一个包含100个样本和10个特征的示例数据集。然后,我们将数据集拆分为训练集和测试集。接下来,我们创建一个AdaBoost分类器,并使用训练集对其进行拟合。最后,我们使用测试集进行预测,并计算预测准确率。

2.2 bagging

Bagging(Bootstrap Aggregating)是一种集成学习方法,通过随机有放回抽样生成多个训练集,每个训练集用于训练一个基本学习器,最后通过投票或平均来进行预测。下面是Bagging的详细介绍:
在这里插入图片描述

  1. 基本概念:Bagging的核心思想是通过构建多个基本学习器的集合来提高整体性能。每个基本学习器都是在不同的训练集上独立训练得到的,最后通过集成基本学习器的预测结果来进行最终的预测。

  2. Bootstrap抽样:Bagging使用Bootstrap抽样技术生成多个训练集。Bootstrap抽样是一种有放回的抽样方法,从原始训练集中随机抽取样本,生成与原始训练集大小相同的新训练集。由于有放回抽样,新训练集中可能包含重复的样本,也可能有部分样本未被抽到。

  3. 基本学习器:每个训练集用于训练一个基本学习器。基本学习器可以是同一种学习算法的不同实例,也可以是不同的学习算法。通过在不同的训练集上独立训练基本学习器,可以获得多个学习器的集合。

  4. 集成预测:在预测阶段,Bagging通过对基本学习器的预测结果进行投票(分类问题)或平均(回归问题)来得到最终的预测结果。对于分类问题,可以采用多数投票的方式,选择预测结果最多的类别作为最终预测结果。

  5. 随机森林(Random Forest):随机森林是一种基于Bagging和决策树的集成学习方法。它通过随机选择特征子集和样本子集来构建多个决策树,并通过投票来进行预测。随机森林在每个决策树的训练过程中,都会使用随机选择的特征子集,以增加模型的多样性。

Bagging是一种简单而有效的集成学习方法,能够减少模型的方差,提高模型的稳定性和泛化能力。它在实际应用中广泛使用,如随机森林和Bagging分类器等。
以下是一个使用Python中的scikit-learn库实现Bagging算法的简单代码示例:

from sklearn.ensemble import BaggingClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

# 生成一个示例数据集
X, y = make_classification(n_samples=100, n_features=10, random_state=42)

# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建基本学习器(决策树)
base_estimator = DecisionTreeClassifier()

# 创建Bagging分类器
clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=50, random_state=42)

# 在训练集上拟合分类器
clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在这个示例中,我们首先使用make_classification函数生成一个包含100个样本和10个特征的示例数据集。然后,我们将数据集拆分为训练集和测试集。接下来,我们创建一个基本学习器(这里使用决策树),并使用基本学习器创建一个Bagging分类器。最后,我们使用训练集对Bagging分类器进行拟合,并使用测试集进行预测,计算预测准确率。

2.3 集成

这是一个使用投票策略的集成分类器的示例代码。以下是一个使用Python编写的示例:

from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义三个不同的分类器
clf1 = DecisionTreeClassifier(random_state=42)
clf2 = KNeighborsClassifier()
clf3 = SVC(probability=True)

# 定义投票分类器
voting_clf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='hard')

# 训练投票分类器
voting_clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = voting_clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

在这个示例中,我们使用了三个不同的分类器(决策树、K近邻和支持向量机)来构建一个投票分类器。通过VotingClassifier类,我们将这三个分类器组合在一起,并使用voting='hard'来指定使用硬投票策略。然后,我们使用训练集对投票分类器进行训练,并在测试集上进行预测。最后,我们使用accuracy_score函数计算预测结果的准确率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/211405.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Hdoop学习笔记(HDP)-Part.06 安装OracleJDK

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

损失函数代价函数

代价函数(Cost Function)和损失函数(Loss Function)是深度学习中两个相关但不完全相同的概念,它们用于衡量模型的性能,并在训练过程中进行参数优化。尽管经常被混用,但在一些文献中也有区别对待…

深度学习(四):pytorch搭建GAN(对抗网络)

1.GAN 生成对抗网络(GAN)是一种深度学习模型,由两个网络组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成假数据,而判别器则负责判断数据是真实的还是 f…

Python常见实战问题解析与解决方案

更多Python学习内容:ipengtao.com 大家好,我是涛哥,今天为大家分享 Python常见实战问题解析与解决方案,全文5200字,阅读大约13分钟。 Python作为一门强大而灵活的编程语言,常常面临各种实际挑战。在本文中&…

Flink(九)【时间语义与水位线】

前言 2023-12-02-20:05,终于写完啦,最近状态不错。刚写完又收到了她的消息哈哈哈哈,开心。 再去全力打拼一次,奋战一场,就算最后打了败仗也无所谓,至少你留下了足迹。 《解忧杂货店》 1、时间语义 …

【计算机网络】15、NAT、NAPT 网络地址转换、打洞

文章目录 一、概念二、分类(主要是传统 NAT)2.1 基本 NAT2.2 NAPT 三、访问NAT下的内网设备的方式3.1 多拨3.2 端口转发、DMZ3.3 UPnP IGD、NAT-PMP3.4 服务器中转:frp 内网穿透3.4.1 NAT 打洞3.4.2 NAT 类型与打洞成功率3.4.2.1 完全圆锥形 …

C++设计模式——Bridge模式(下)

在上篇 《C设计模式——Bridge模式(上)》中我们对于桥接模式做了一些介绍。介于桥接模式在实际项目开发中使用广泛,而且也是面试中常问常新的话题。在本篇,我们专注bridge模式在具体的项目开发中的应用,举几个例子来说…

快手自动评论助手:开发流程与所需技术的深度解析

先来看实操成果,↑↑需要的同学可看我名字↖↖↖↖↖,或评论888无偿分享 一、引言 随着互联网的发展,越来越多的人开始使用快手这款短视频平台。在这个平台上,用户可以分享自己的生活点滴,观看他人的精彩瞬间。然而&am…

Ext4文件系统解析(一)

1、前言 熟悉Linux操作系统的都应该或多或少的了解或者使用过Ext4文件系统。 接下来,会简单介绍Ext4文件系统的一些特性和工作原理。 2、常用概念 在介绍Ext文件系统之前,先简单描述一些相关概念。 块(Block):Ext文件系统存储分配的基本单…

软件工程 - 第8章 面向对象建模 - 4 - 物理体系结构建模

构件图 构件图概述 构件图描述了软件的各种构件和它们之间的依赖关系。 构件图的作用 在构件图中,系统中的每个物理构件都使用构件符号来表示,通常,构件图看起来像是构件图标的集合,这些图标代表系统中的物理部件,…

java学习part30callabel和线程池方式

140-多线程-线程的创建方式3、4:实现Callable与线程池_哔哩哔哩_bilibili 1.Callable 实现类 使用方式 返回值 2.线程池

Linux expect命令详解

在Linux系统中,expect 是一款非常有用的工具,它允许用户自动化与需要用户输入进行交互的程序。本文将深入探讨expect命令的基本语法、使用方法以及一些最佳实践。 什么是Expect命令? expect 是一个用于自动化交互式进程的工具。它的主要功能…

【PyTorch】线性回归

文章目录 1. 代码实现1.1 一元线性回归模型的训练 2. 代码解读2.1. tensorboardX2.1.1. tensorboardX的安装2.1.2. tensorboardX的使用 1. 代码实现 波士顿房价数据集下载 1.1 一元线性回归模型的训练 import numpy as np import torch import torch.nn as nn from torch.ut…

Ext4文件系统解析(二)

1、前言 想要了解EXT文件系统的工作原理,那了解文件系统在磁盘上的分布就是必不可少的。这一节主要介绍EXT文件系统硬盘存储的物理结构。 由于当前主流的CPU架构均采用小端模式,因此下文介绍均已小端模式为准。 2、超级块 2.1 属性 下表列举出超级块…

Java 8 中 ReentrantLock 与 Synchronized 的区别

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

分布式ID生成框架Leaf升级踩坑

背景: 在项目中需要一个统一的拿单号等唯一ID的服务,就想起了之前用到的leaf,但是因为项目要求,leaf的版本不符合,需要做一些升级 项目地址:https://github.com/Meituan-Dianping/Leaf 升级点&#xff1…

231202 刷题日报

周四周五,边值班边扯皮,没有刷题。。 今天主要是做了: 1. 稀疏矩阵压缩,十字链表法 2. 快速排序 3.349. 两个数组的交集​​​​​ 4. 174. 地下城游戏 要注意溢出问题!

Motion 5 for Mac,释放创意,打造精彩视频特效!

Motion 5 for Mac是一款强大的视频后期特效处理软件,为Mac用户提供了无限的创意可能性。无论你是专业的影视制作人,还是想为个人视频添加独特特效的爱好者,Motion 5都能满足你的需求,让你的视频脱颖而出。 Motion 5提供了丰富多样…

跳表的基础

跳表的作用 无需数组查找目标元素-----从头遍历---O(n); 有序数组查找目标元素-----二分查找---O(logn); 链表查找目标元素----------只能从头遍历---O(n); 那么链表要如何实现O(logn)的查找时间复杂度呢-----跳表。 跳表的定义 有序链表多级索引跳表 就是一个多级链表 …

TA-Lib学习研究笔记(八)——Momentum Indicators 中

TA-Lib学习研究笔记(八)——Momentum Indicators 中 Momentum Indicators 动量指标,是最重要的股票分析指标,能够通过数据量化分析价格、成交量,预测股票走势和强度,大部分指标都在股票软件中提供。 11. …
最新文章