<JavaEE> volatile关键字 -- 保证内存可见性、禁止指令重排序

目录

一、内存可见性

1.1 Java内存模型(JMM)

1.2 内存可见性演示

二、指令重排序

三、关键字 volatile 


一、内存可见性

1.1 Java内存模型(JMM)

1)什么是Java内存模型(JMM)?
Java内存模型即Java Memory Model,简称JMM。用于屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各平台下都能够达到一致的内存访问效果,即实现“跨平台”。
2)JMM中的“主内存”概念和“工作内存”概念
“主内存”硬件中的内存,在JMM中表述为“主内存”,其中存储了线程间的共享变量等数据。
“工作内存”CPU寄存器和缓存等临时存储区,在JMM中表述为“工作内存”,每个线程都有自己的“工作内存”。
3)线程和“主内存”、“工作内存”的关系

当线程需要读取共享变量时,会从“主内存”拷贝至“工作内存”,再从“工作内存”读取。

当线程需要修改共享变量时,会先修改“工作内存”中的数据副本,再将数据同步回“主内存”。

线程运行中,数据的交互是频繁且持续的,而CPU访问自身寄存器和高速缓存的速度远高于访问内存的速度。

因此,采用频繁与“工作内存”交互、需要时再与“主内存”交互的工作策略,有利于提高运行效率,是编译器优化的方式之一

1.2 内存可见性演示

什么是内存可见性?

内存可见性是指,线程对共享变量值的修改,能否被其他线程及时察觉。

如果一个线程修改了共享变量值,但没有及时写回内存中,导致其他线程无法获得已修改的正确数据,这就被认为出现了线程安全问题。

内存可见性是导致线程不安全的原因之一。

代码演示内存不可见导致线程不安全:

public class Volatile_Demo0 {
    //有一个共享变量flag,注意该变量没有被 volatile 修饰;
    public static int flag = 0;

    public static void main(String[] args) throws InterruptedException {
        //创建一个线程,线程中当flag为0时,一直循环判断;
        Thread t = new Thread(()->{
            while (flag == 0){}
        });

        //启动线程;
        System.out.println("run开始");
        t.start();

        //让main线程休眠两秒后,将flag的值改为1;
        Thread.sleep(2000);
        flag = 1;

        //让main线程等待t线程结束;
        t.join();
        System.out.println("run结束");
    }
}

//运行结果:
run开始
...

程序一直在执行,没有打印“run结束”。
出现了线程安全问题。

上述代码问题分析:

程序无法结束的原因是什么?

根据代码,flag 在线程启动两秒后被改为 1 ,此时 t 线程应该因为跳出 while 循环而执行完毕。

但实际情况却不是这样,t 线程没有结束。

正如上文“线程和‘主内存’、‘工作内存’的关系”中提到的,线程读取共享数据到“工作内存中”,再从“工作内存”读取数据。

所以此时在 t 线程中,参与 while 循环条件判断的 flag ,实际上是一个存储在“工作内存”的 flag 副本。

当 flag 通过另一线程改变值,改变的是“主内存”中的 flag,t 线程并不能察觉。

因此 t 线程无法从 while 循环中跳出并结束。

这就是内存可见性影响线程安全的情况之一。


二、指令重排序

1)什么是指令重排序?

指令重排序是指编译器自动调整原有代码的执行顺序,在保证逻辑不变的前提下,提高程序运行效率。

指令重排序也是编译器优化的方式之一。

2)指令重排序存在什么问题?

指令重排序的前提是“保证逻辑不变”。这一点在单线程环境下较容易判断,但是在多线程环境下,代码复杂程度高,编译器在编译阶段对代码执行效果的判断存在困难。

因此在多线程环境下,代码重排序很容易导致优化后和优化前的逻辑不等价。

图示演示指令重排序可能出现的问题:


三、关键字 volatile 

1)volatile 的作用是什么?
<1>

保证内存可见性。volatile 修饰的变量每次被访问都必须从内存中读取,每次被修改都必须存储到内存中。

<2>禁止指令重排序。volatile 修饰的变量读写操作的相关指令不允许被重排序。
2)内存可见性和指令重排序都是编译器优化,怎么好像都是负作用?

在大部分场景下,编译器优化都能非常优秀的提高程序的运行效率,只是在多线程编程的部分关键代码中,存在线程不安全的风险。

3)volatile 不保证原子性
volatile 和 synchronized 有本质的区别,synchronized 保证原子性,而 volatile 保证的是内存可见性。
4)合理的使用 volatile 关键字

编译器优化就好像一场激烈的风暴,而程序员要做的就是掌控这场风暴,必要时让风暴停一停。

为此,Java 提供了 volatile 关键字供程序员使用。当使用 volatile 关键字时,强制读写内存,禁止指令重排序,程序运行速度变慢,但数据准确性提高,线程变得安全了。

代码演示 volatile 的使用效果,沿用上文“内存可见性演示”中的代码:

public class Volatile_Demo0 {
    //有一个共享变量flag,注意该变量已经被 volatile 修饰;
    public volatile static int flag = 0;

    public static void main(String[] args) throws InterruptedException {
        //创建一个线程,线程中当flag为0时,一直循环判断;
        Thread t = new Thread(()->{
            while (flag == 0){}
        });

        //启动线程;
        System.out.println("run开始");
        t.start();

        //让main线程休眠两秒后,将flag的值改为1;
        Thread.sleep(2000);
        flag = 1;

        //让main线程等待t线程结束;
        t.join();
        System.out.println("run结束");
    }
}

//运行结果:
run开始
run结束

与上文“内存可见性演示”中的代码唯一的不同,就是在共享变量 flag 上,使用了 volatile 进行修饰。
但这次的结果是程序正常执行完毕,证明了 volatile 的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/211857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【重点】【双指针】11. 盛最多水的容器

题目 注意&#xff1a;二维接雨水&#xff0c;有墙的&#xff0c;有线的&#xff0c;着这个属于线的。 class Solution {public int maxArea(int[] height) {if (height.length < 2) {return 0;}int left 0, right height.length - 1, res 0;while (left < right) {…

三轴加速度计LIS2DW12开发(2)----基于中断信号获取加速度数据

三轴加速度计LIS2DW12开发.2--轮基于中断信号获取加速度数据 概述视频教学样品申请生成STM32CUBEMX串口配置IIC配置CS和SA0设置INT1设置串口重定向参考程序初始换管脚获取ID复位操作BDU设置开启INT1中断设置传感器的量程配置过滤器链配置电源模式设置输出数据速率中断判断加速…

【动态规划】LeetCode-931.下降路径最小和

&#x1f388;算法那些事专栏说明&#xff1a;这是一个记录刷题日常的专栏&#xff0c;每个文章标题前都会写明这道题使用的算法。专栏每日计划至少更新1道题目&#xff0c;在这立下Flag&#x1f6a9; &#x1f3e0;个人主页&#xff1a;Jammingpro &#x1f4d5;专栏链接&…

深度学习记录--logistic回归函数的计算图

计算图用于logistic回归函数 先回顾一下单一样本的logistic回归损失函数的公式&#xff0c;公式如下&#xff1a; 将logistic函数用计算图表示出来(以两个基础量为例)&#xff0c;计算图如下&#xff1a; 前向传播已经完成&#xff0c;接下来完成后向传播 运用链式法则依次求…

Vue---Echarts

项目需要用echarts来做数据展示&#xff0c;现记录vue3引入并使用echarts的过程。 1. 使用步骤 安装 ECharts&#xff1a;使用 npm 或 yarn 等包管理工具安装 ECharts。 npm install echarts 在 Vue 组件中引入 ECharts&#xff1a;在需要使用图表的 Vue 组件中&#xff0c;引入…

如何选择适合的光电传感器与 STM32 微控制器进行接口设计

本文介绍了如何选择适合的光电传感器与 STM32 微控制器进行接口设计的方法。首先我们将介绍一些选择光电传感器的关键因素&#xff0c;包括测量范围、响应时间、分辨率和输出类型。然后我们将介绍如何根据所选传感器的特性进行硬件连接和接口设计。最后&#xff0c;我们将提供示…

20231201将RK3399的挖掘机开发板在Andorid12系统下的强制横屏

20231201将RK3399的挖掘机开发板在Andorid12系统下的强制横屏 2023/12/1 22:54 【不完美的地方&#xff1a;修改之后不满屏】 百度&#xff1a;rk3399 android12 横屏 不满屏 Android 显示不满屏 build.prop https://blog.csdn.net/weixin_39966398/article/details/105595184?…

9.ROS的TF坐标变换(三):坐标系关系查看与一个案例

1 查看目前的坐标系变化 我们先安装功能包&#xff1a; sudo apt install ros-melodic-tf2-tools安装成功&#xff01; 我们先启动上次的发布坐标变换的节点&#xff1a; liuhongweiliuhongwei-Legion-Y9000P-IRX8H:~/Desktop/final/my_catkin$ source devel/setup.bash liuho…

RocketMQ- 深入理解RocketMQ的消息模型

1、RocketMQ客户端基本流程 ​ RocketMQ基于Maven提供了客户端的核心依赖&#xff1a; <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-client</artifactId><version>4.9.5</version> </dependency&…

RxJava

Single 使用 Flowable 比较重一般使用Single onSubscribe 产生订阅时调用 线程切换1 2 发送顺序事件.just just 源码 钩子方法,进行验证再处理 Single 对象 订阅,RxJavaPlugins.onSubscribe 钩子方法,产生订阅和过滤 Single 核心方法,抽象的,实现为SingleJust 订阅和执行成功回…

同旺科技 USB TO SPI / I2C --- 调试W5500_Ping测试

所需设备&#xff1a; 内附链接 1、USB转SPI_I2C适配器(专业版); 首先&#xff0c;连接W5500模块与同旺科技USB TO SPI / I2C适配器&#xff0c;如下图&#xff1a; 设置寄存器&#xff1a; SHAR&#xff08;源MAC地址寄存器&#xff09;&#xff0c;该寄存器用来设置源MAC…

网络入门---网络编程初步认识和实践

目录标题 前言准备工作udpserver.hpp成员变量构造函数初始化函数(socket,bind)start函数(recvfrom) udpServer.ccudpClient.hpp构造函数初始化函数run函数(sendto) udpClient.cc测试 前言 在上一篇文章中我们初步的认识了端口号的作用&#xff0c;ip地址和MAC地址在网络通信时…

HuggingFace学习笔记--Prompt-Tuning高效微调

1--Prompt-Tuning介绍 Prompt-Tuning 高效微调只会训练新增的Prompt的表示层&#xff0c;模型的其余参数全部固定&#xff1b; 新增的 Prompt 内容可以分为 Hard Prompt 和 Soft Prompt 两类&#xff1b; Soft prompt 通常指的是一种较为宽泛或模糊的提示&#xff0c;允许模型在…

规则引擎专题---3、Drools组成和入门

Drools概述 drools是一款由JBoss组织提供的基于Java语言开发的开源规则引擎&#xff0c;可以将复杂且多变的业务规则从硬编码中解放出来&#xff0c;以规则脚本的形式存放在文件或特定的存储介质中(例如存放在数据库中)&#xff0c;使得业务规则的变更不需要修改项目代码、重启…

初识RocketMQ

1、简介 RocketMQ 是阿里巴巴在 2012 年开源的消息队列产品&#xff0c;用 Java 语言实现&#xff0c;在设计时参考了 Kafka&#xff0c;并做出了自己的一些改进&#xff0c;后来捐赠给 Apache 软件基金会&#xff0c;2017 正式毕业&#xff0c;成为 Apache 的顶级项目。Rocket…

avue-crud中时间范围选择默认应该是0点却变成了12点

文章目录 一、问题二、解决三、最后 一、问题 在avue-crud中时间范围选择&#xff0c;正常默认应该是0点&#xff0c;但是不知道怎么的了&#xff0c;选完之后就是一直是12点。具体问题如下动图所示&#xff1a; <template><avue-crud :option"option" /&g…

YOLOv8改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)

一、本文介绍 本文给大家带来的改进内容是SCConv&#xff0c;即空间和通道重构卷积&#xff0c;是一种发布于2023.9月份的一个新的改进机制。它的核心创新在于能够同时处理图像的空间&#xff08;形状、结构&#xff09;和通道&#xff08;色彩、深度&#xff09;信息&#xf…

计算机组成原理笔记——存储器(静态RAM和动态RAM的区别,动态RAM的刷新, ROM……)

■ 随机存取存储器 ■ 1.随机存取存储器&#xff1a;按存储信息的原理不同分为&#xff1a;静态RAM和动态RAM 2.静态RAM&#xff08;SRAM&#xff09;&#xff1a;用触发器工作原理存储信息&#xff0c;但电源掉电时&#xff0c;存储信息会丢失具有易失性。 3.存储器的基本单元…

代码随想录算法训练营第三十四天|62.不同路径,63. 不同路径 II

62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#…

Kubernetes技术与架构-策略

Kubernetes集群提供系统支持的策略&#xff0c;也提供开放接口给第三方定义的策略&#xff0c;这些策略用于可定义的配置文件或者Kubernetes集群的运行时环境&#xff0c;其中包括进程ID数量的申请与限制策略&#xff0c;服务器节点Node内的进程ID的数量限制策略&#xff0c;Po…