软著项目推荐 深度学习图像风格迁移

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):
    content_layers = [('relu3_3', 1.0)]
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:

        # 计算特征矩阵
        p = get_vgg(content_img, layer_name)
        x = get_vgg(rand_img, layer_name)
        # 长x宽xchannel
        M = p.shape[1] * p.shape[2] * p.shape[3]

        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight

    # 将损失对层数取平均
    content_loss /= len(content_layers)
    return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):
    x = tf.reshape(x, (size, deep))
    g = tf.matmul(tf.transpose(x), x)
    return g

def style_loss(style_img, rand_img):
    style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:

        # 计算特征矩阵
        a = get_vgg(style_img, layer_name)
        x = get_vgg(rand_img, layer_name)

        # 长x宽
        M = a.shape[1] * a.shape[2]
        N = a.shape[3]

        # 计算gram矩阵
        A = gram(a, M, N)
        G = gram(x, M, N)

        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():
            # 生成图片
            rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)
            with tf.Session() as sess:
    
                content_img = cv2.imread('content.jpg')
                style_img = cv2.imread('style.jpg')
            
                # 计算loss值
                cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)
                optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
            
                sess.run(tf.global_variables_initializer())
                
                for step in range(TRAIN_STEPS):
                    # 训练
                    sess.run([optimizer,  rand_img])
            
                    if step % 50 == 0:
                        img = sess.run(rand_img)
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                        cv2.imwrite(name, img)
    
    
    

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():
    layers=(
        'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
        'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
        'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
        'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
        'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
    )
    vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
    weights = vgg['layers'][0]

    network={}
    net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
    network['input'] = net
    for i,name in enumerate(layers):
        layer_type=name[:4]
        if layer_type=='conv':
            kernels = weights[i][0][0][0][0][0]
            bias = weights[i][0][0][0][0][1]
            conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
            net=tf.nn.relu(conv + bias)
        elif layer_type=='pool':
            net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
        network[name]=net
    return network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:



    import tensorflow as tf
    import numpy as np
    import scipy.io
    import cv2
    import scipy.misc
    
    HEIGHT = 300
    WIGHT = 450
    LEARNING_RATE = 1.0
    NOISE = 0.5
    ALPHA = 1
    BETA = 500
    
    TRAIN_STEPS = 200
    
    OUTPUT_IMAGE = "D://python//img"
    STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
    CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]


    def vgg19():
        layers=(
            'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
            'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
            'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
            'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
            'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
        )
        vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
        weights = vgg['layers'][0]
    
        network={}
        net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
        network['input'] = net
        for i,name in enumerate(layers):
            layer_type=name[:4]
            if layer_type=='conv':
                kernels = weights[i][0][0][0][0][0]
                bias = weights[i][0][0][0][0][1]
                conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
                net=tf.nn.relu(conv + bias)
            elif layer_type=='pool':
                net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
            network[name]=net
        return network


    # 求gamm矩阵
    def gram(x, size, deep):
        x = tf.reshape(x, (size, deep))
        g = tf.matmul(tf.transpose(x), x)
        return g


    def style_loss(sess, style_neck, model):
        style_loss = 0.0
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = style_neck[layer_name]
            x = model[layer_name]
            # 长x宽
            M = a.shape[1] * a.shape[2]
            N = a.shape[3]
    
            # 计算gram矩阵
            A = gram(a, M, N)
            G = gram(x, M, N)
    
            # 根据公式计算损失,并进行累加
            style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
            # 将损失对层数取平均
        style_loss /= len(STYLE_LAUERS)
        return style_loss


    def content_loss(sess, content_neck, model):
        content_loss = 0.0
        # 逐个取出衡量内容损失的vgg层名称及对应权重
    
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = content_neck[layer_name]
            x = model[layer_name]
            # 长x宽xchannel
    
            M = p.shape[1] * p.shape[2]
            N = p.shape[3]
    
            lss = 1.0 / (M * N)
            content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight
            # 根据公式计算损失,并进行累加
    
        # 将损失对层数取平均
        content_loss /= len(CONTENT_LAYERS)
        return content_loss


    def random_img(height, weight, content_img):
        noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])
        random_img = noise_image * NOISE + content_img * (1 - NOISE)
        return random_img

   

    def get_neck(sess, model, content_img, style_img):
        sess.run(tf.assign(model['input'], content_img))
        content_neck = {}
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = sess.run(model[layer_name])
            content_neck[layer_name] = p
        sess.run(tf.assign(model['input'], style_img))
        style_content = {}
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = sess.run(model[layer_name])
            style_content[layer_name] = a
        return content_neck, style_content


    def main():
        model = vgg19()
        content_img = cv2.imread('D://a//content1.jpg')
        content_img = cv2.resize(content_img, (450, 300))
        content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
        style_img = cv2.imread('D://a//style1.jpg')
        style_img = cv2.resize(style_img, (450, 300))
        style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
    
        # 生成图片
        rand_img = random_img(HEIGHT, WIGHT, content_img)
    
        with tf.Session() as sess:
            # 计算loss值
            content_neck, style_neck = get_neck(sess, model, content_img, style_img)
            cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
    
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(model['input'], rand_img))
            for step in range(TRAIN_STEPS):
                print(step)
                # 训练
                sess.run(optimizer)
    
                if step % 10 == 0:
                    img = sess.run(model['input'])
                    img += [128, 128, 128]
                    img = np.clip(img, 0, 255).astype(np.uint8)
                    name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                    img = img[0]
                    cv2.imwrite(name, img)
    
            img = sess.run(model['input'])
            img += [128, 128, 128]
            img = np.clip(img, 0, 255).astype(np.uint8)
            cv2.imwrite("D://end.jpg", img[0])
    
    main()



7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/217136.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【ArcGIS Pro微课1000例】0048:深度学习--人群计数

文章目录 一、小学回忆录二、深度学习计算人头数三、案例实现一、小学回忆录 加载配套实验数据包中的图片及训练模型。你还记得当年的小学毕业班有多少同学吗?今天我们就用ArcGIS提供的人工智能工具,重温一下童年记忆。 二、深度学习计算人头数 本案例使用到的是深度学习中…

[树莓派3B+][内核版本6.1]的linux内核编译+替换 (超详细)

学习Linux的内核编译,我使用的是x86 64位的18.04的ubuntu-linux虚拟机: 目录 树莓派的Linux内核源码安装 操作系统的启动过程 & Bootloader 单片机裸机:C51,STM32 X86,Intel:windows 嵌入式产品:…

CUDA简介——同步

1. 引言 前序博客: CUDA简介——基本概念CUDA简介——编程模式CUDA简介——For循环并行化CUDA简介——Grid和Block内Thread索引CUDA简介——CUDA内存模式 本文重点关注Thread同步和Barriers。 Threads并行执行,可能存在如下问题: 1&#…

芯擎科技与芯华章深度合作,软硬件协同开发加速车规级芯片创新

12月4日,系统级验证EDA解决方案提供商芯华章,与国产高端车规芯片设计公司芯擎科技正式建立战略合作。双方强强联手,芯擎科技导入芯华章相关EDA验证工具,赋能车规级芯片和应用软件的协同开发,助力大规模缩短产品上市周期…

PoE技术详解

标准的五类网线有四对双绞线,IEEE 802.3af和IEEE 802.3at允许两种用法:通过空闲线对供电或者数据线对供电。IEEE 802.3bt允许通过空闲线对供电、通过数据线对供电或者空闲线对和数据线对一起供电,如图16.1所示。 图 16.1 PoE供电线对 当在一…

第一节JavaScript 简介与使用

JavaScript简介 JavaScript是互联网上最流行的脚本语言,这门语言可用于HTML和Web,更广泛用于服务器、PC、电脑、智能手机等设备上。 JavaScript是一种轻量级的编程语言。 JavaScript是可插入HTML页面的编程代码。 JavaScript插入HTML页面后&#xff…

使用coco数据集进行语义分割:数据预处理与损失函数

如何coco数据集进行目标检测的介绍已经有很多了,但是关于语义分割几乎没有。本文旨在说明如何处理 stuff_train2017.json stuff_val2017.json panoptic_train2017.json panoptic_val2017.json,将上面那些json中的dict转化为图片的label mask&am…

【Proteus仿真】【Arduino单片机】蔬菜大棚温湿度控制系统设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使用PCF8574、LCD1602液晶、DHT11温湿度传感器、按键、继电器、蜂鸣器、加热、水泵电机等。 主要功能: 系统运行后,LCD160…

【模电】设置静态工作点的必要性

设置静态工作点的必要性 静态工作点为什么要设置静态工作点 静态工作点 在放大电路中,当有信号输入时,交流量与直流量共存。将输入信号为零、即直流电源单独作用时晶体管的基极电流 I B I\tiny B IB、集电极电流 I C I\tiny C IC、b - e间电压 U B E U\t…

玩转大数据5:构建可扩展的大数据架构

1. 引言 随着数字化时代的到来,大数据已经成为企业、组织和个人关注的焦点。大数据架构作为大数据应用的核心组成部分,对于企业的数字化转型和信息化建设至关重要。我们将探讨大数据架构的基本要素和原则,以及Java在大数据架构中的角色&…

智能指针与动态内存

动态内存 new placement new 是 C 中的一种内存分配方式,它允许在给定的内存地址上构造对象,而不是在默认的堆上分配新的内存。这对于某些特殊的内存管理场景非常有用,例如在特定的内存池中分配对象。 C11 引入了 "new auto" 语法…

【C语言】递归详解

目录 1.前言2. 递归的定义3. 递归的限制条件4. 递归举例4.1 求n的阶乘4.1.1 分析和代码实现4.1.2 画图演示 4.2 顺序打印一个整数的每一位4.2.1 分析和代码实现4.2.2 画图推演 4.3 求第n个斐波那契数 5. 递归与迭代5.1 迭代求第n个斐波那契数 1.前言 这次博客内容是与递归有关&…

leetcode 876.链表的中间结点

补充上次的环形链表没细讲的快慢指针(这三道题现在可以连起来看),希望对你做题思路有帮助 876.链表的中间结点 题目 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结…

kubernetes监控GPA安装部署

本文在于指导如何对k8s的监控GPA(Grafana,prometheus以及alertmanager)进行安装部署。 1. 介绍 Prometheus 在真正部署Prometheus之前,应了解一下Prometheus的各个组件之间的关系及作用: 1)MertricServer:是k8s集群…

面试官:说说synchronized与ReentrantLock的区别

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一波电子书籍资料,包含《Effective Java中文版 第2版》《深入JAVA虚拟机》,《重构改善既有代码设计》,《MySQL高性能-第3版》&…

【NI-RIO入门】Real Time(实时系统解释)

1.什么是实时系统? 实时系统可以非常精确可靠的执行需要特定时许要求的系统,对于许多工程项目来说,通用操作系统,例如WINDOWS等标准PC上运行测量和控制程序是无法精确控制计时的,这些系统很容易受用户的其他程序、图像…

联想LJ2655DN激光打印机清零方法

随着打印机的使用越来越频繁,需要更换耗材的时候也越来越多;但是更换上新的耗材后,很多用户都会遇到一个问题,就是更换完新的耗材后打印机仍然提示寿命将近,或者无墨粉盒灯情况,这个时候就需要我们对打印机…

关于使用百度开发者平台处理语音朗读问题排查

错误信息:"convert_offline": false, "err_detail": "16: Open api characters limit reach 需要领取完 识别和合成都要有

Win7 旗舰版打开Rustdesk软件提示无法启动程序 ,计算机中丢失api-ms-win-shcore-scaling-|1-1-1.dll

环境: Win7 旗舰版 64位 Rustdesk1.19自编译客户端 问题描述: Win7 旗舰版打开Rustdesk软件提示无法启动程序 ,计算机中丢失api-ms-win-shcore-scaling-|1-1-1.dll "api-ms-win-shcore-scaling-|1-1-1.dll" 是一个系统动态链接库文件,它是Windows操作系统的一…

Selenium 学习(0.16)——软件测试之测试用例设计方法——白盒测试——逻辑覆盖法(语句覆盖和判定覆盖)

写在前面 今天回来有点晚,因为上午给小伙伴们开了个小会,随便说了些什么,结果小伙伴们下班就没急着走,弄点我还有点不好意思提前走了,就略留了一会。其实也没说什么,就是强调工作要抓点紧,8小时…