【C语言:自定义类型(结构体、位段、共用体、枚举)】

文章目录

  • 1.结构体
    • 1.1什么是结构体
    • 1.2结构体类型声明
    • 1.3结构体变量的定义和初始化
    • 1.4结构体的访问
  • 2.结构体对齐
    • 2.1如何对齐
    • 2.2为什么存在内存对齐?
  • 3.结构体实现位段
    • 3.1什么是位段
    • 3.2位段的内存分配
    • 3.3位段的跨平台问题
    • 3.4位段的应用
    • 3.5位段使用注意事项
  • 4.联合体
    • 4.1联合体的声明
    • 4.2联合体的特点
    • 4.3联合体的大小
    • 4.4联合体与结构体的对比
  • 5.枚举
    • 5.1枚举类型的声明
    • 5.2枚举类型的优点

在这里插入图片描述

1.结构体

1.1什么是结构体

  • C语言已经提供了内置类型,如:char、short、int、long、float、double等,但是只有这些内置类型还是不够的,
  • 假设我想描述学生,描述⼀本书,这时单⼀的内置类型是不⾏的。描述⼀个学生需要名字、年龄、学号、身高、体重等;描述⼀本书需要作者、出版社、定价等。C语言为了解决这个问题,增加了结构体这种⾃定义的数据类型,让程序员可以⾃⼰创造适合的类型。
  • 结构体是⼀些值的集合,这些值称为成员变量结构体的每个成员可以是不同类型的变量,如:标量、数组、指针,甚⾄是其他结构体

1.2结构体类型声明

关键字:struct

struct stu   //stu 结构体的名字
{
	//以下是结构体的成员变量
	int age;
	char name[20];
	float score;
	//......
};  //分号不能丢

特殊声明方式:匿名结构体,即在声明结构体时不完全声明,省略了结构体的名字。

struct
{
	int a;
	char b;
	float c;
}x;

看下面的代码,这样做的结果时什么?

struct
{
	int a;
	char b;
	float c;
}x;
struct
{
	int a;
	char b;
	float c;
}a[20], * p;

int main()
{
	p = &x;
	return 0;
}

在这里插入图片描述

编译器会把上⾯的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。

1.3结构体变量的定义和初始化

  1. 变量的定义
struct Point  
{
	int x;
	int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
  1. 变量的初始化
struct Point p3 = { 10, 20 };
struct Stu //类型声明
{
	char name[15];//名字
	int age; //年龄
};
struct Stu s1 = { "zhangsan", 20 };//按顺序初始化
struct Stu s2 = { .age = 20, .name = "lisi" };//指定顺序初始化
  1. 结构体嵌套、自引用
struct Node
{
	int data;
	struct Point p;//嵌套
	struct Node* next;//自引用
}n1 = { 10, {4,5}, NULL }; //结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化

1.4结构体的访问

结构体的访问有两种方式:

  • 直接访问:通过点操作符(.)访问
  • 间接访问:通过结构体指针访问,访问方式:结构体指针 -> 成员名

在这里插入图片描述

2.结构体对齐

在下面的代码中,char占1个字节,int占4个字节,那结构体的总大小就是5个字节,真的是这样嘛?

int main()
{
	struct s
	{
		char c;
		int i;
	};
	printf("%d\n", sizeof(struct s));
	return 0;
}

在这里插入图片描述

2.1如何对齐

要弄清结果为什么是8,我们就得了解结构体的对齐规则

  • 1.结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处

  • 2.其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的⼀个对齐数 与 该成员变量大小的较小值

  • 3.VS 中默认的值为 8

  • 4.Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小。

  • 5.如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处

  • 6.结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍

#pragma这个预处理指令,可以修改编译器的默认对齐数

#pragma pack(1)//设置默认对⻬数为1
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认

到底是怎么对齐的呢?看下图
在这里插入图片描述

来练习几个吧

在这里插入图片描述

2.2为什么存在内存对齐?

大部分的参考资料都是这样说的:

  1. 平台原因 (移植原因):
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因:
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
因此,设计结构体的时候,我们既要满足对齐,⼜要节省空间,就要让占用空间小的成员尽量集中在⼀起。

3.结构体实现位段

3.1什么是位段

你听说过位段吗?是不是只听说过段位呀哈哈

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以 选择其他类型,例如char。
  2. 位段的成员名后边有⼀个冒号和⼀个数字

位段的位其实指的就是二进制位,下面的A就是位段类型的

struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	printf("%d\n", sizeof(struct A));
	return 0;
}

2+5+10+30=47bit,一个字节是8个bit,那是不是6个字节就够了呢?
在这里插入图片描述
结果是8个字节。为什么是8个字节呢?----那是因为位段也存在对齐,位段的总大小也要对齐到自己最大成员变量的整数被。
注意:位段后的数字不可大于该数字本身的大小,否则就报错

3.2位段的内存分配

关于位段在内存中是如何存储的,C语言标准并未给出定义,下面我们就研究以下在VS中,位段是如何存储的。

struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
int main()
{
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	return 0;
}

我们假设如果第一个字节中放不下了,就放在下一个字节中,第一个字节中剩余的比特位就舍弃,那么就是下面的结果:
在这里插入图片描述
vs中是不是这样存储的呢?看图我们知道,确实就是这样存的。
在这里插入图片描述

3.3位段的跨平台问题

  1. int 位段被当成有符号数还是⽆符号数是不确定的。
  2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

因此:跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.4位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。
在这里插入图片描述

3.5位段使用注意事项

  • 位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的
  • 所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。

在这里插入图片描述

4.联合体

4.1联合体的声明

  • 像结构体⼀样,联合体也是由⼀个或者多个成员构成,这些成员可以是不同的类型。
  • 但是编译器只为最⼤的成员分配⾜够的内存空间。联合体的特点是所有成员共⽤同⼀块内存空间。所以联合体也叫:共⽤体。
  • 给联合体其中⼀个成员赋值,其他成员的值也跟着变化。

在这里插入图片描述

4.2联合体的特点

  1. 所有变量公用同一块空间
  2. 改变一个成员,其它成员跟着变

在这里插入图片描述

4.3联合体的大小

  • 联合的大小⾄少是最⼤成员的大小。
  • 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对⻬数的整数倍

在这里插入图片描述

4.4联合体与结构体的对比

在这里插入图片描述
因此,使用联合体是比较节省空间的。

5.枚举

5.1枚举类型的声明

枚举枚举,顾名思义,就是一一列举。在生活中可以一 一列举出来的就可以使用枚举类型。例如

⼀周的星期⼀到星期⽇是有限的7天,可以⼀⼀列举
⽉份有12个⽉,也可以⼀⼀列举

枚举的关键字是enum,枚举成员用逗号隔开,最后一个成员不加逗号
在这里插入图片描述

  • 枚举的可能取值是常量,不能修改,因此我们也叫做枚举常量
  • 枚举类型的变量的值只能是枚举的可能取值

在这里插入图片描述

enum day
{
	Monday,		
	Tuesday,	
	Wednsdsday = 10,	
	Thursday,	
	Friday,		
	Saturday = 20,	
	Sunday		
};

enum day d = Sunday;//使⽤枚举常量给枚举变量赋值

5.2枚举类型的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点:

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 便于调试,预处理阶段会删除 #define 定义的符号
  4. 使用⽅便,⼀次可以定义多个常量
  5. 枚举常量是遵循作⽤域规则的,枚举声明在函数内,只能在函数内使⽤

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/220023.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vmware ubuntu22 访问github

1.虚拟机选NAT模式。 2.firefox找到下图setting。 3.选第四个,填主机ip和局域网代理的端口号。 4. 此时你应该能访问github了。

外包测试8个月,技术退步有点明显···

有一说一,外包没有给很高的薪资,是真不能干呀! 先说一下自己的情况,本科生,年初通过校招进入深圳某软件公司,干了接近半年的功能测试,直到最近遇到了瓶颈,感觉自己不能够在这样下去了…

TrustZone之虚拟地址空间

在本系列中的内存管理指南介绍了多个虚拟地址空间或translation regimes的概念。例如,有一个用于EL0/1的translation regime,还有一个用于EL2的独立translation regime,如下所示: 还有专门的翻译方案用于安全状态和非安全状态。例…

麒麟系统图形化应用自启

1.图形化自启动 XDG_Autostart 规范定义了一种通过将其放置在特定中来在桌面环境启动和 可移动介质安装中自动启动普通桌面配置的方法。 ⚫ 用户级别$XDG_CONFIG_HOME/autostart (默认为~/.config/autostart) ⚫ 系统级别$XDG_CONFIG_DIRS/autostart (默认为 /etc/xdg/autost…

12.1 二叉树简单题

101. 对称二叉树 给你一个二叉树的根节点 root , 检查它是否轴对称。 示例 1: 输入:root [1,2,2,3,4,4,3] 输出:true 思路:对称二叉树 有一个特点是以 中左右顺序遍历左子树的结果会等于 中右左顺序遍历右子树的结果…

检测判断IP合法性API接口

检测判断IP合法性API接口 一、检测判断IP合法性API接口二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、 如何获取appKey和uid1、申请appKey:2、获取appKey和uid 四、重要说明 一、检测判断IP合法性API接口 一款免费的帮助你检测判断IP合法性API接口 二、…

shiny的图片如何插入,为什么会裂开?

因为你没有把资源放在内部: Shiny学习(二) ||构建用户界面 - 简书d 当然也有例外比如: shiny-如何在 Shinydashboard R 中 dashboard 标题的中心显示图像? - 糯米PHP

河北科技大学2024招生简章

河北科技大学2024招生简章 计算机专业目录 计算机专业参考书目 408计算机学科专业基础 无指定参考书,考试内容参考教育部公布的《全国硕士研究生招生考试计算机学科专业基础考试大纲》 计算机控制技术 《微型计算机控制技术》,赖寿宏,机械…

DDD落地:京东的微服务生产项目,DDD如何落地?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中,最近有小伙伴拿到了一线互联网企业如阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 谈谈你的DDD落地经验? 谈谈你对DDD的理解&#x…

Web漏洞分析-SQL注入XXE注入(中下)

随着互联网的不断普及和Web应用的广泛应用,网络安全问题愈发引起广泛关注。在网络安全领域中,SQL注入和XXE注入是两个备受关注的话题,也是导致许多安全漏洞的主要原因之一。本博客将深入研究这两种常见的Web漏洞,带您探寻背后的原…

【UE】在场景中或控件蓝图上显示移动的文字

目录 效果 步骤 一、制作含有文字的图片 二、在场景中显示移动的文字 三、在控件蓝图上显示 效果 步骤 一、制作含有文字的图片 打开PS,新建一个宽度为600,高度为50的文档 添加一段文字 保存 二、在场景中显示移动的文字 1. 打开UE编辑器&#x…

Avalonia框架下面使用Prism框架实现MVVM模式

前言 默认情况下,使用Avalonia模板创建的Avalonia项目自带了Mvvm框架,其实用着也蛮好用的,但是前期在WPF开发中习惯了使用Prism框架,所以今天我们就来研究一下如何在Avalonia项目里面引入Prism框架来提高开发效率。 创建Avaloni…

JS加密/解密之HOOK实战

之前的章节有介绍过Javascript的Hook相关的基础知识,相信大部分人也知道了什么是Hook,今天我们来讲一下Hook实战,实际的运用。 0x1.事上练 // 程序员们基本都喜欢简单精辟 直入主题 不喜欢咬文嚼字 我们先直接上代码 var _log console.log…

OpenCvSharp从入门到实践-(05)通道

目录 1、拆分通道 1.1、实例1-拆分一副BGR图像的通道 1.2、实例2-拆分一副HSV图像的通道 2、合并通道 2.1 实例3-合并通道的顺序不同,图像的显示效果也不通 实例4-合格H通道图像、S通道图像、V通道图像 3、综合运用拆分通道和合并通道 2.2、实例5-只把H通道…

一文介绍接口测试中的请求和响应

在测试工作中,我们经常要对web应用或者app进行接口测试,接口测试过程中最重要的就是掌握一个接口中的请求和响应。本文主要是为大家介绍一下接口中的请求和响应到底是什么,在前后端交互中主要起什么作用。 一:介绍一下HTTP 我们…

一文带你了解Java中synchronized原理

🌈🌈🌈今天给大家分享的是Java中 synchronized 的基本原理 清风的CSDN博客 🛩️🛩️🛩️希望我的文章能对你有所帮助,有不足的地方还请各位看官多多指教,大家一起学习交流&#xff…

2023 年 O 基础学习 SwiftUI

关于 SwiftUI SwiftUI 于2019年6月3日在苹果的全球开发者大会(WWDC)上首次亮相。在这次活动中,苹果正式宣布了 SwiftUI,并将其列为 iOS 13 和 macOS Catalina 的一部分。 SwiftUI 是一种用于构建用户界面的 UI 框架。SwiftUI 的设…

Servlet基础知识

Servlet是Java提供的一门动态的web资源开发技术 Servlet是JavaEE规范之一&#xff0c;其实就是一个接口&#xff0c;将来我们需要定义Servlet类实现Servlet接口&#xff0c;并由web服务器运行Servelt Servlet快速入门 创建web项目&#xff0c;导入Servlet依赖坐标 <depe…

百度Apollo新版本Beta技术沙龙参会体验

在自动驾驶领域&#xff0c;百度的Apollo一直是业界开源的标杆。其持续升级和创新的开源项目为整个自动驾驶行业树立了典范&#xff0c;不仅推动了技术的发展&#xff0c;也为广大的社区开发者们提供了学习和参考的范本。最近百度发布了Apollo新的Beta版本&#xff0c; 新版本B…

【PID学习笔记 6 】控制系统的性能指标之二

写在前面 上文介绍了控制系统的稳态与动态、过渡过程、阶跃响应以及阶跃信号作用下过渡过程的四种形式。本文紧接上文&#xff0c;首先总结过渡过程的分类&#xff0c;然后介绍控制系统的性能评价&#xff0c;最后重点介绍控制系统性能指标中的单项指标。 一、过渡过程的分类…