diffusers pipeline拆解:理解pipelines、models和schedulers

diffusers pipeline拆解:理解pipelines、models和schedulers

翻译自:https://huggingface.co/docs/diffusers/using-diffusers/write_own_pipeline v0.24.0

diffusers 设计初衷就是作为一个简单且易用的工具包,来帮助你在自己的使用场景中构建 diffusion 系统。diffusers 的核心是 models 和 schedulers。而 DiffusionPipeline 则将这些组件打包到一起,从而可以简便地使用。在了解其中原理之后,你也可以将这些组件(models 和 schedulers)拆开,来构建适合自己场景的 diffusion 系统。

本文将介绍如何使用 models 和 schedulers 来组建一个 diffusion 系统用作推理生图。我们先从最基础的 DDPMPipeline 开始,然后介绍更复杂、更常用的 StableDiffusionPipeline。

解构DDPMPipeline

以下是 DDPMPipeline 构建和推理的示例:

from diffusers import DDPMPipeline

ddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda")
image = ddpm(num_inference_steps=25).images[0]
image

在这里插入图片描述

这就是 diffusers 中使用 pipeline 进行推理生图的全部步骤了,是不是超级简单!那么,在 pipeline 背后实际上都做了什么呢?我们接下来将 pipeline 拆解开,看一下它具体做了什么事。

我们提到,pipeline 主要的组件是 models 和 schedulers,在上面的 DDPMPipeline 中,就包含了 UNet2DModel 和 DDPMScheduler。该 pipeline 首先产生一个与输出图片尺寸相同的噪声图,在每个时间步(timestep),将噪声图传给 model 来预测噪声残差(noise residual),然后 scheduler 会根据预测出的噪声残差得到一张噪声稍小的图像,如此反复,直到达到预设的最大时间步,就得到了一张高质量生成图像。

我们可以不直接调用 pipeline 的 API,根据下面的步骤自己走一遍 pipeline 做的事情:

加载模型 model 和 scheduler
from diffusers import DDPMScheduler, UNet2DModel

scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda")
设置timesteps
scheduler.set_timesteps(50)
scheduler.timesteps
# 输出:
tensor([980, 960, 940, 920, 900, 880, 860, 840, 820, 800, 780, 760, 740, 720,
        700, 680, 660, 640, 620, 600, 580, 560, 540, 520, 500, 480, 460, 440,
        420, 400, 380, 360, 340, 320, 300, 280, 260, 240, 220, 200, 180, 160,
        140, 120, 100,  80,  60,  40,  20,   0])

在对 scheduler 设置好总的去噪步数之后,ddpm scheduler 会创建一组均匀间隔的数组,本例中我们将 temesteps 设置为 50,所以该数组的长度为 50。在进行去噪时,数组中的每个元素对应了一个时间步,在之后不断循环的去噪中,我们在每一步会遍历用到这个数组的元素。

采样随机噪声

采样一个与输出图片尺寸相同的随机噪声:

import torch

sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
实现迭代去噪循环

然后我们写一个循环,来迭代这些时间步。在每个 step,UNet2DModel 都会进行一次 forward,并返回预测的噪声残差。scheduler 的 step 方法接收 噪声残差 noisy_residual 、当前时间步 tinput 作为输入,输出前一时间步的噪声稍小的图片。然后该输出会作为下一时间步的模型输入。反复迭代这个过程,直到将 timesteps 迭代完。

input = noise

for t in scheduler.timesteps:
    with torch.no_grad():
        noisy_residual = model(input, t).sample
    previous_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
    input = previous_noisy_sample

以上就是完整的去噪过程了,你也可以使用类似的方式来实现自己的 diffusion 系统。

  1. 最后一步我们将去噪输出转换为 pillow 图片,看一下结果:

    from PIL import Image
    import numpy as np
    
    image = (input / 2 + 0.5).clamp(0, 1).squeeze()
    image = (image.permute(1, 2, 0) * 255).round().to(torch.uint8).cpu().numpy()
    image = Image.fromarray(image)
    image
    

以上就是基础的 DDPMPipeline 背后实际做的事情了。首先,初始化 model 和 scheduler,然后为 scheduler 设置最大时间步,创建一个时间步数组,然后我们采样一个随机噪声,循环遍历 timestep,在每个 step,模型会预测出一个噪声残差,scheduler 根据这个噪声残差来生成一个噪声稍小的图片,如此迭代,直到走完所有 step。

接下来我们将看一下更复杂、更强大的 StableDiffusionPipeline,整体的步骤与上面的 DDPMPipeline 类似。

解构StableDiffusionPipeline

Stable Diffusion 是一种 latent diffusion 的文生图模型。所谓 latent diffusion,指的是其扩散过程是发生在低维度的隐层空间,而非真实的像素空间。这样的模型比较省内存。vae encoder 将图片压缩成一个低维的表示,vae decoder 则负责将压缩特征转换回为真实图片。对于文生图的模型,我们还需要一个 tokenizer 和一个 text encoder 来生成 text embedding,还有,在前面的 DDPMPipeline 中已经提到的 Unet model 和 scheduler。可以看到,Stable Diffusion 已经比 DDPM pipeline 要复杂的多了,它包含了三个独立的预训练模型。

加载模型、设置参数

现在我们先将各个组件通过 from_pretrained 方法加载进来。这里我们先用 SD1.5 的预训练权重,每个组件存放在不同的子目录中:

from PIL import Image
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler

vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_safetensors=True)
tokenizer = CLIPTokenizer.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(
    "CompVis/stable-diffusion-v1-4", subfolder="text_encoder", use_safetensors=True
)
unet = UNet2DConditionModel.from_pretrained(
    "CompVis/stable-diffusion-v1-4", subfolder="unet", use_safetensors=True
)

这里我们使用 UniPCMultistepScheduler 来替换掉默认的 PNDMScheduler。没别的意思,就为了展示一下替换一个其他的 scheduler 组件有多么简单:

from diffusers import UniPCMultistepScheduler

scheduler = UniPCMultistepScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")

然后将各个模型放到 cuda 上:

torch_device = "cuda"
vae.to(torch_device)
text_encoder.to(torch_device)
unet.to(torch_device)

配置一些参数:

prompt = ["a photograph of an astronaut riding a horse"] # prompt按自己喜好设置,想生成什么就描述什么
height = 512  # SD 默认高
width = 512  # SD 默认款
num_inference_steps = 25  # 去噪步数
guidance_scale = 7.5  # classifier-free guidance (CFG) scale
generator = torch.manual_seed(0)  # 随机种子生成器,用于控制初始的噪声图
batch_size = len(prompt)

其中 guidance_scale 参数表示图片生成过程中考虑 prompt 的权重。

创建 text embedding

接下来,我们来对条件 prompt 进行 tokenize,并通过 text encoder 模型产生文本 embedding:

text_input = tokenizer(
    prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt"
)

with torch.no_grad():
    text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]

我们还需要产生无条件的 text tokens,其完全有 padding token 组成,然后经过 text encoder,得到 uncond_embedding 的 batch_size 和 seq_length 需要与刚刚得到的条件 text embedding 相等。我们将 条件 embedding 和无条件 embedding 拼起来,从而进行并行的 forward:

max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]

text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
采样随机噪声

之前提到,SD 的扩散过程是在低维度的 latent 空间进行的,因此此时采样的随机噪声的尺寸比最终生成图片小。对这个 latent 噪声进行迭代去噪。我们随后会通过 vae decoder 将它解码到真实图片的尺寸,即 512。

vae enoder (在 img2img 中使用, text2img 不需要) 和 vae decoder 分别用于将真实尺寸的图片映射到低维 latent 空间,和将低维 latent 解码为真实图片。由于 vae 有三个降采样层,每次会将图片尺寸缩小一半,从而总共缩小了 2**3=8 倍,因此我们将原图的尺寸缩小 8 倍,得到 latent 空间的噪声尺寸。

# 2 ** (len(vae.config.block_out_channels) - 1) == 8

latents = torch.randn(
    (batch_size, unet.config.in_channels, height // 8, width // 8),
    generator=generator,
    device=torch_device,
)
对图像进行去噪

首先我们要先对噪声进行放缩,乘上一个系数 sigma,这可以提升某些 schedulers 的效果,比如我们刚替换的 UniPCMultistepScheduler:

latents = latents * scheduler.init_noise_sigma

然后,我们写一个循环,将 latent 空间的纯噪声一步步地去噪为关于我们 prompt 的 latent 图。和之前 DDPM 的循环类似,整体上我们要做三件事情:

  1. 设置 scheduler 的总去噪步数
  2. 迭代进行这些去噪步
  3. 在每一步,使用 UNet model 来预测噪声残差,并将其传给 scheduler ,生成出上一步的噪声图片

不同的是,我们这里的 SD 需要做 classifer-guidance generation:

from tqdm.auto import tqdm

scheduler.set_timesteps(num_inference_steps)

for t in tqdm(scheduler.timesteps):
    # 我们要做 classifier-guidance generation,所以先扩一下 latent,方便并行推理
    latent_model_input = torch.cat([latents] * 2)

    latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)

    # 预测噪声残差
    with torch.no_grad():
        noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

    # 进行引导
    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

    # 生成前一步的 x_t -> x_t-1
    latents = scheduler.step(noise_pred, t, latents).prev_sample
图片解码

最后一步我们使用 vae decoder 来对去噪之后 latent representation 进行解码生成出真实图片。并转换成 pillow image 查看结果。

# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
with torch.no_grad():
    image = vae.decode(latents).sample
    
image = (image / 2 + 0.5).clamp(0, 1).squeeze()
image = (image.permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
images = (image * 255).round().astype("uint8")
image = Image.fromarray(image)
image

在这里插入图片描述

从基础的 DDPMPipeline 到更复杂的 StableDiffusionPipeline,我们了解了如何构建自己的 diffusion 系统。关键就是在迭代去噪循环的视线。主要包含设定 timesteps、遍历 timesteps 并交替使用 UNet model 进行噪声预测和使用 scheduler 进行前一步图的计算。这就是 diffusers 库的设计理念,既可以直接通过封装好的 pipeline 直接生图,也可以用其中的各个组件方便地自己构建 diffusion 系统的 pipeline。

下一步,我们可以:

  1. 探索其他 diffusers 库中已有的 pipeline,像本文介绍的那样试着自己对其进行结构,并自行从头实现。
  2. 试着自己构造一个全新的 pipeline 并贡献到 diffusers 库 参考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/228258.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

四十、Saga模式

目录 一、定义 二、流程 三、优点 四、缺点 五、四种模式的对比 一、定义 Saga模式是一种用于处理复杂异步操作流的模式,通常用于React/Redux的应用程序中。在这种模式中,业务逻辑被分成多个离散步骤,每个步骤都是一个Generator函数&…

AUTOSAR CP Port Driver简介

Port Driver 1 背景2 基于 EB 及 TC39X 配置3 Port API 使用1 背景 Port driver 在 AUTOSAR 中是一个比较冷门的模块,基本上在 MCAL 层级,关注的人也少,他由不像其他模块那样通用型比较强,Port 在每种内核的 MCU 的配置都有区别,甚至有些芯片直接没有 Port 模块,使用其他方…

企业级高级美颜美妆SDK解决方案

人们对于美的追求已经不仅仅局限于现实世界,更延伸到了虚拟世界。为了满足这一需求,美摄科技全新开发了一款高级美颜美妆SDK,为企业提供了一站式的美颜美妆解决方案。 这款全新的美颜美妆SDK,是我们对美颜技术的一次全面升级。它…

Java实现布隆过滤器

一、概述 布隆过滤器本质上是一个很长的二进制数组,主要用来判断一个数据存不存在数组里,如果存在就用1表示,不存在用0表示,它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。 …

教你pycharm运行Django第一个项目

文章目录 前言搭建Django:1.新建Django项目:2.为Django项目指定远程中创建的虚拟环境下的python解释器:3.配置ubuntu的端口转发(添加端口号为1234的端口):关于Python技术储备一、Python所有方向的学习路线二、Python基…

Nacos源码解读07——集群数据同步

Distro协议背景 Distro 协议是 Nacos 社区自研的⼀种 AP 分布式协议,是面向临时实例设计的⼀种分布式协议, 其保证了在某些 Nacos 节点宕机后,整个临时实例处理系统依旧可以正常工作。作为⼀种有状态 的中间件应用的内嵌协议,Dis…

【软件推荐】文本转语音,语音转wav,导入ue5

文字转语音 在线免费文字转语音 - TTSMaker官网 | 马克配音https://ttsmaker.cn/ 文件转换器 语音转wav Convertio — 文件转换器https://convertio.co/zh/

[英语学习][10][Word Power Made Easy]的精读与翻译优化

[序言] 下面这段话, 译者翻译没有太大问题, 就是某些单词上, 跟他理解得不一样. 另外还有一个关键的定语从句, 我认为译者理解不到位, 导致翻译不够通顺. [英文学习的目标] 提升自身的英语水平, 对日后编程技能的提升有很大帮助. 希望大家这次能学到东西, 同时加入我的社区讨…

静态HTTP和动态HTTP的混合使用:最佳实践

在当今的互联网环境中,静态HTTP和动态HTTP各有其优势和局限。静态HTTP具有速度快、安全性高和易于维护的特点,而动态HTTP则能够实现动态交互和处理大量动态数据。为了充分利用两者的优势,越来越多的网站开始采用静态HTTP和动态HTTP混合使用的…

两个分数相加。

输入两个分数&#xff0c;例如3/41/2&#xff0c;输出3/41/25/4。 运行程序时&#xff0c;如下图所示&#xff1a; 输入样例1: 1/61/2输出样例2: 1/61/22/3 #include<stdio.h> int gcd(int a,int b) //求最大公约数&#xff08;Greatest Common Divisor&…

代码随想录第二十七天(一刷C语言)|分发饼干摆动序列最大子数组和

创作目的&#xff1a;为了方便自己后续复习重点&#xff0c;以及养成写博客的习惯。 一、分发饼干 思路&#xff1a;参考carl文档 局部最优就是大饼干喂给胃口大的&#xff0c;充分利用饼干尺寸喂饱一个&#xff0c;全局最优就是喂饱尽可能多的小孩。尝试使用贪心策略&#x…

FastAPI之声明请求参数示例数据

在Pydantic模型中添加额外的JSON模式数据 您可以声明Pydantic模型的示例&#xff0c;这些示例将被添加到生成的JSON模式中。 示例代码 from fastapi import FastAPI from pydantic import BaseModelapp FastAPI()class Item(BaseModel):name: strdescription: str | None …

设计模式——单例模式(Singleton Pattern)

概述 单例模式确保一个类只有一个实例&#xff0c;而且自行实例化并向整个系统提供整个实例&#xff0c;这个类称为单例类&#xff0c;它提供全局访问的方法。单例模式是一种对象创建型模式。单例模式有三个要点&#xff1a;一是某个类只能有一个实例&#xff1b;二是它必须自行…

WebStorm:Mac/Win上强大的JavaScript开发工具

WebStorm是JetBrains公司开发的针对Mac和Windows系统的JavaScript开发工具。它为开发者提供了一站式的代码编辑、调试、测试和版本控制等功能&#xff0c;帮助你更高效地进行Web开发。新版本的WebStorm 2023在性能和用户体验方面都做出了重大改进&#xff0c;让你的JavaScript开…

冰箱镜头除雾解决方案

冰箱镜头除雾解决方案 1.0 雾气产生原因 由于温度和湿度的变化,导致空气中的水汽凝结在镜头上,形成一层细小的水滴,从而影响了镜头的透光性和清晰度。 这种情况跟汽车玻璃、眼镜等物体表面起雾的原理是一样的, 雾的形成条件 (1)湿度–充足的水汽:①水汽输送(向岸风…

【RHCE】openlab搭建web网站

网站需求&#xff1a; 1、基于域名 www.openlab.com 可以访问网站内容为 welcome to openlab!!! 增加映射 [rootlocalhost ~]# vim /etc/hosts 创建网页 [rootlocalhost ~]# mkdir -p /www/openlab [rootlocalhost ~]# echo welcome to openlab > /www/openlab/index.h…

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-2 特征值与特征向量

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-数学基础Ch0-2 特征值与特征向量 1. 定义1.1 线性变换1.2 求解特征值&#xff0c;特征向量1.3 应用&#xff1a;对角化矩阵——解耦Decouple 2. Summary 1. 定义 A v ⃗ λ v ⃗ A\vec{v}\lambd…

广播和组播

1. 广播 1.1 知识点 INADDR_ANY代表本机所有地址 常用方法当你将套接字绑定到INADDR_ANY&#xff0c;它会监听所有可用的网络接口&#xff0c;这意味着它将接受来自所有本地IP地址的传入连接或数据包 1.1.1 广播的流程 广播发送端&#xff1a; ----> 添加广播属性 1、建立套…

无需繁琐编程 开启高效数据分析之旅!

不学编程做R统计分析&#xff1a;图形界面R Commander官方手册 R Commander是 R 的图形用户界面&#xff0c;不需要键入命令就可通过熟悉的菜单和对话框来访问 R 统计软件。 R 和 R Commander 均可免费安装于所有常见的操作系统——Windows、Mac OS X 和 Linux/UNIX。 本书作…

DataGrip常见问题

查询语句结果没有输出在output中 进行如下配置 配置后查询结果输出在output中 左侧数据库链接信息导航栏被隐藏 以上导航栏被隐藏&#xff0c;按下图操作调出
最新文章