从零开始实现神经网络(三)_RNN循环神经网络

参考文章:rnn循环神经网络介绍

循环神经网络 (RNN) 是一种专门处理序列的神经网络。它们通常用于自然语言处理 (NLP) 任务,因为它们在处理文本方面很有效。在这篇文章中,我们将探讨什么是 RNN,了解它们是如何工作的,并在 Python 中从头开始(仅使用 numpy)构建一个真正的 RNN。

这篇文章假设你对神经网络有基本的了解

我的另一篇文章(从零开始实现神经网络(一)_NN神经网络)涵盖了你需要知道的一切,所以我建议先阅读它。

让我们开始吧!

一. 使用rnn的原因

普通神经网络(以及CNN)的一个问题是,它们只在预定大小的情况下工作:它们接受固定大小的输入并产生固定大小的输出。RNN 很有用,因为它们让我们可以将可变长度的序列作为输入和输出。以下是 RNN 的几个示例:

输入为红色,RNN 本身为绿色,输出为蓝色

这种处理序列的能力使得RNN非常有用。例如:

  • 机器翻译(例如谷歌翻译)是用“多对多”RNN完成的。原始文本序列被输入到 RNN 中,然后生成翻译后的文本作为输出。
  • 情感分析(例如,这是正面评论还是负面评论?)通常使用“多对一”RNN来完成。要分析的文本被输入到RNN中,然后生成单个输出分类(例如,这是一个正面评论)。

在本文的后面,我们将从头开始构建一个“多对一”的 RNN 来执行基本的情感分析。

二. 如何实现rnn

让我们考虑一个带有输入的“多对多”RNN ,输入是x0,x1,x2.......xn,想要产生输出y0​,y1​,y2......yn​.这些xi​和yi​是向量,可以具有任意维度。

RNN 通过迭代更新隐藏状态(h)来工作,这也是一个可以具有任意维度的向量。在任何给定步数(t)时

  1. 下一个隐藏状态 ( ht​ )使用先前的隐藏状态( ht-1)和下一个输入xt​进行计算。举例:如果要求h2的值,那么就是h1和x2的值进行计算得出。
  2. 下一个输出yt​是由ht计算得来​.

这就是 RNN 循环的原因它对每个步骤使用相同的权重。更具体地说,一个典型的 vanilla RNN 只使用 3 组权重来执行其计算:

  • W_{xh}​,权重用于所有x_{t} h_{t}之间的运算。
  • W_{hh},权重用于所有h_{t-1}​  h_{t}之间的运算。
  • W_{hy}​,权重用于所有h_{t}  y_{t}之间的运算。

我们还将对 RNN 使用两种偏差:

  • b_{h},在计算h_{t}时被加上。
  • b_{y}​,在计算y_{t}时被加上.

我们将权重表示为矩阵,将偏差表示为向量。这 3 个权重和 2 个偏差构成了整个 RNN!

以下是将所有内容组合在一起的方程式:

h_{t} = tanh(W_{xh}*x_{t} + W_{hh}*h_{t-1} + b_{h})

y_{t} = W_{hy}*h_{t} + b_{y}

不要略过这些方程式。停下来盯着它看一分钟。另外,请记住,权重是矩阵,其他变量是向量

使用矩阵乘法应用所有权重,并将偏差添加到所得产品中。然后我们使用 tanh 作为第一个方程的激活函数(但也可以使用其他激活,如 sigmoid)。

三. rnn要解决的问题

让我们亲自动手!我们将从头开始实现一个 RNN 来执行一个简单的情感分析任务:确定给定的文本字符串是正向情感的还是负向情感。

以下是我为这篇文章整理的小型数据集中的一些示例:

文本字符串正向?
i am good
i am bad
this is very good
this is not bad
i am bad not good
i am not at all happy
this was good earlier
i am not at all bad or sad right now

四. 使用方案

由于这是一个分类问题,我们将使用“多对一”RNN。这类似于我们之前讨论的“多对多”RNN,但它只使用最终的隐藏状态来产生一个输出y:

每个x_{i}将是一个向量,表示文本中的单词。输出 y 将是一个包含两个数字的向量,一个表示正数,另一个表示负数。我们将应用 Softmax 将这些值转换为概率,并最终在正/负之间做出决定。

让我们开始构建我们的 RNN!

五. 预处理

我前面提到的数据集由两个 Python 字典组成,True = 正,False = 负

#this file is data.py

train_data = {
  'good': True,
  'bad': False,
  # ... more data
}

test_data = {
  'this is happy': True,
  'i am good': True,
  # ... more data
}

我们必须进行一些预处理,以将数据转换为可用的格式。首先,我们将构建数据中存在的所有单词的词汇表

#this file is main.py
from data import train_data, test_data

# Create the vocabulary.
vocab = list(set([w for text in train_data.keys() for w in text.split(' ')]))
vocab_size = len(vocab)
print('%d unique words found' % vocab_size) # 18 unique words found

vocab现在包含至少一个训练文本中出现的所有单词的列表。接下来,我们将分配一个整数索引来表示词汇中的每个单词。

#this file is main.py
# Assign indices to each word.
word_to_idx = { w: i for i, w in enumerate(vocab) }
idx_to_word = { i: w for i, w in enumerate(vocab) }
print(word_to_idx['good']) # 16 (this may change)
print(idx_to_word[0]) # sad (this may change)

现在,我们可以用其相应的整数索引来表示任何给定的单词!这是必要的,因为 RNN 无法理解单词——我们必须给它们数字。

最后,回想一下每个输入 x_{i} ​我们的RNN是一个向量。我们将使用 one-hot (独热)向量,它包含除了一个是 1 之外其他都为零的向量。每个 one-hot 向量中的“one”将位于单词的相应整数索引处。

由于我们的词汇表中有 18 个独特的单词,因此每个单词x_{i}​将是一个 18 维的独热向量。

#this file is main.py

import numpy as np

def createInputs(text):
  '''
  Returns an array of one-hot vectors representing the words
  in the input text string.
  - text is a string
  - Each one-hot vector has shape (vocab_size, 1)
  '''
  inputs = []
  for w in text.split(' '):
    v = np.zeros((vocab_size, 1))
    v[word_to_idx[w]] = 1
    inputs.append(v)
  return inputs

我们稍后将使用向量输入来传递到我们的 RNN。createInputs()

六. 前向传播

是时候开始实现我们的 RNN 了!我们将首先初始化我们的 RNN 需要的 3 个权重和 2 个偏差:

#this file is rnn.py

import numpy as np
from numpy.random import randn

class RNN:
  # A Vanilla Recurrent Neural Network.

  def __init__(self, input_size, output_size, hidden_size=64):
    # Weights
    self.Whh = randn(hidden_size, hidden_size) / 1000
    self.Wxh = randn(hidden_size, input_size) / 1000
    self.Why = randn(output_size, hidden_size) / 1000

    # Biases
    self.bh = np.zeros((hidden_size, 1))
    self.by = np.zeros((output_size, 1))

注意:我们将除以 1000 以减少权重的初始方差。这不是初始化权重的最佳方法,但它很简单,适用于这篇文章。

我们使用 np.random.randn() 从标准正态分布初始化我们的权重。

接下来,让我们实现 RNN 的前向传播。还记得我们之前看到的这两个方程式吗?

h_{t} = tanh(W_{xh}*x_{t} + W_{hh}*h_{t-1} + b_{h})

y_{t} = W_{hy}*h_{t} + b_{y}

以下是代码实现这个方程式:

#this file is rnn.py
class RNN:
  # ...

  def forward(self, inputs):
    '''
    Perform a forward pass of the RNN using the given inputs.
    Returns the final output and hidden state.
    - inputs is an array of one-hot vectors with shape (input_size, 1).
    '''
    h = np.zeros((self.Whh.shape[0], 1))

    # Perform each step of the RNN
    for i, x in enumerate(inputs):
      h = np.tanh(self.Wxh @ x + self.Whh @ h + self.bh)

    # Compute the output
    y = self.Why @ h + self.by

    return y, h

很简单,对吧?请注意,我们初始化了 到第一步的零向量,因为没有上一步 h 我们可以在当前节点上使用。

#this file is main.py
# ...

def softmax(xs):
  # Applies the Softmax Function to the input array.
  return np.exp(xs) / sum(np.exp(xs))

# Initialize our RNN!
rnn = RNN(vocab_size, 2)

inputs = createInputs('i am very good')
out, h = rnn.forward(inputs)
probs = softmax(out)
print(probs) # [[0.50000095], [0.49999905]]

如果您需要复习 Softmax,请阅读我当前系列的cnn文章,里面有详细介绍。

我们的 RNN 有效,但还不是很有用。让我们改变一下......

七. 反向传播

为了训练我们的RNN,我们首先需要一个损失函数。我们将使用交叉熵损失,它通常与 Softmax 配对。以下是我们的计算方式:

L = -ln(p_{c})

pc是我们的 RNN 对正确类别(正或负)的预测概率。例如,如果我们的 RNN 预测一个正文本为 90%,则损失为:

L = -ln(0.90) = 0.105

想要更长的解释吗?阅读我的CNN中的交叉熵损失部分。

现在我们有一个损失,我们将使用梯度下降来训练我们的 RNN,以尽量减少损失。这意味着是时候推导出一些梯度了!

⚠️ 以下部分假定您具备多变量微积分的基本知识。如果你愿意,你可以跳过它,但我建议你略读一下,即使你不太了解。在得出结果时,我们将逐步编写代码,即使是表面的理解也会有所帮助。

7.1 定义

首先,定义一些变量:

  • 让 y 表示 RNN 的原始输出。
  • 让 p 表示最终概率:p=softmax(y)
  • 让 引用某个文本样本的真实标签,也称为“正确”类。
  • 让 是交叉熵损失:L = -ln(p_{c})
  • W_{xh}​,W_{hh},W_{hy}成为我们 RNN 中的 3 个权重矩阵。
  • b_{h}​和b_{y}成为我们 RNN 中的 2 个偏置向量。

7.2 设置

接下来,我们需要修改我们的正向传播,以缓存一些数据以在反向传播使用。与此同时,我们还将为反向传播搭建骨架。

rnn.py
class RNN:
  # ...

  def forward(self, inputs):
    '''
    Perform a forward pass of the RNN using the given inputs.
    Returns the final output and hidden state.
    - inputs is an array of one-hot vectors with shape (input_size, 1).
    '''
    h = np.zeros((self.Whh.shape[0], 1))

    self.last_inputs = inputs
    self.last_hs = { 0: h }

    # Perform each step of the RNN
    for i, x in enumerate(inputs):
      h = np.tanh(self.Wxh @ x + self.Whh @ h + self.bh)
      self.last_hs[i + 1] = h

    # Compute the output
    y = self.Why @ h + self.by

    return y, h

  def backprop(self, d_y, learn_rate=2e-2):
    '''
    Perform a backward pass of the RNN.
    - d_y (dL/dy) has shape (output_size, 1).
    - learn_rate is a float.
    '''
    pass

是不是好奇我们为什么要做这个缓存?在前面cnn的章节中有相关解释

 

7.3 梯度(求偏导)

现在是数学时间!我们将从计算\frac{\partial L}{\partial y}开始.

我们知道:

p_{c} = softmax(y_{c})

L = -ln(p_{c} ) = -ln(softmax(y_{c}))

我将留下\frac{\partial L}{\partial y}​使用链式法则:

这里假设当前要计算的索引值的i,那么当i是正确的类c时,有:

\frac{\partial L}{\partial y_{i}}\left\{\begin{matrix} p_{i} & if (i\neq c) \\ p_{i}-1 & if(i=c) \end{matrix}\right.

例如,如果我们有p=[0. 2,0. 2,0.6],正确的类是c=0,那么我们会得到\frac{\partial L}{\partial y}=[−0.8,0.2,0.6]。这也很容易转化为代码:

# Loop over each training example
for x, y in train_data.items():
  inputs = createInputs(x)
  target = int(y)

  # Forward
  out, _ = rnn.forward(inputs)
  probs = softmax(out)

  # Build dL/dy
  d_L_d_y = probs
  d_L_d_y[target] -= 1

  # Backward
  rnn.backprop(d_L_d_y)

 好。接下来,让我们来看看偏导W_{HY}b_{y},仅用于将最终的隐藏状态转换为 RNN 的输出。我们有


h_{n}是最终的隐藏状态。因此

同样地

我们现在可以开始实现反向传播了!backprop()

class RNN:
  # ...

  def backprop(self, d_y, learn_rate=2e-2):
    '''
    Perform a backward pass of the RNN.
    - d_y (dL/dy) has shape (output_size, 1).
    - learn_rate is a float.
    '''
    n = len(self.last_inputs)

    # Calculate dL/dWhy and dL/dby.
    d_Why = d_y @ self.last_hs[n].T    d_by = d_y

 

提醒:我们之前创建过。self.last_hs   forward()

最后,我们需要偏导W_{hh}W_{xh}b_h,在 RNN 期间的每一步都会使用。我们有:

因为改变W_{xh}影响每一个 h_t,这些都会影响y,并最终影响L。为了充分计算W_{xh},我们需要通过所有时间步进反向传播,这称为时间反向传播 (BPTT):

W_{xh}用于所有xt​  ht​前向链接,因此我们必须向反传播回每个链接。

一旦我们到达给定的步骤t,我们需要计算\frac{\partial h_{t}}{\partial W_{xh}}:

h_t = tanh(W_{xh}*x_t +W_{hh}*h_{t-1}+b_h )

我们所知道的tanh求导:

\frac{dtanh(x)}{dx}=1-tanh^{2}(x)

我们像之前那样使用链式法则:

\frac{\partial h_t}{\partial W_{xh}} = (1-h^{2}_t)x_t

同理:

\frac{\partial h_t}{\partial W_{hh}} = (1-h^{2}_t)h_{t-1}

\frac{\partial h_t}{\partial b_{h}} = (1-h^{2}_t)

最后一步,我们需要\frac{\partial y}{\partial h_t},我们可以递归计算

我们将从最后一个隐藏状态开始实现 BPTT 并反向传播,因此我们已经有了\frac{\partial y}{\partial h_{T+1}}到我们要计算\frac{\partial y}{\partial h_t}的时候!最后一个隐藏状态是例外,h_n

\frac{\partial y}{\partial h_n} = W_{HY}

我们现在拥有最终实现 BPTT 并完成了所需的一切:backprop()

class RNN:
  # ...

  def backprop(self, d_y, learn_rate=2e-2):
    '''
    Perform a backward pass of the RNN.
    - d_y (dL/dy) has shape (output_size, 1).
    - learn_rate is a float.
    '''
    n = len(self.last_inputs)

    # Calculate dL/dWhy and dL/dby.
    d_Why = d_y @ self.last_hs[n].T
    d_by = d_y

    # Initialize dL/dWhh, dL/dWxh, and dL/dbh to zero.
    d_Whh = np.zeros(self.Whh.shape)
    d_Wxh = np.zeros(self.Wxh.shape)
    d_bh = np.zeros(self.bh.shape)

    # Calculate dL/dh for the last h.
    d_h = self.Why.T @ d_y

    # Backpropagate through time.
    for t in reversed(range(n)):
      # An intermediate value: dL/dh * (1 - h^2)
      temp = ((1 - self.last_hs[t + 1] ** 2) * d_h)

      # dL/db = dL/dh * (1 - h^2)
      d_bh += temp
      # dL/dWhh = dL/dh * (1 - h^2) * h_{t-1}
      d_Whh += temp @ self.last_hs[t].T
      # dL/dWxh = dL/dh * (1 - h^2) * x
      d_Wxh += temp @ self.last_inputs[t].T
      # Next dL/dh = dL/dh * (1 - h^2) * Whh
      d_h = self.Whh @ temp

    # Clip to prevent exploding gradients.
    for d in [d_Wxh, d_Whh, d_Why, d_bh, d_by]:
      np.clip(d, -1, 1, out=d)

    # Update weights and biases using gradient descent.
    self.Whh -= learn_rate * d_Whh
    self.Wxh -= learn_rate * d_Wxh
    self.Why -= learn_rate * d_Why
    self.bh -= learn_rate * d_bh
    self.by -= learn_rate * d_by

 需要注意的几点:

  • 我们已经合并了\frac{\partial L}{\partial y} * \frac{\partial y}{\partial h}\frac{\partial L}{\partial h}
  • 我们会不断更新一个包含最新变量的变量d_h,\frac{\partial L}{\partial h_{t+1}}​,我们需要计算\frac{\partial L}{\partial h_t}​.
  • 完成 BPTT 后,我们 np.clip() 限制低于 -1 或高于 1 的梯度值。这有助于缓解梯度爆炸问题,即梯度由于具有大量相乘项而变得非常大。对于普通 RNN 来说,梯度的爆炸或消失是相当成问题的——更复杂的 RNN(如 LSTM)通常更有能力处理它们。
  • 计算完所有梯度后,我们使用梯度下降更新权重和偏差。

我们做到了!我们的 RNN 已经完成了。

八. 进行预测

终于到了我们期待的时刻——让我们测试一下我们的 RNN!

首先,我们将编写一个辅助函数来使用 RNN 处理数据:

import random

def processData(data, backprop=True):
  '''
  Returns the RNN's loss and accuracy for the given data.
  - data is a dictionary mapping text to True or False.
  - backprop determines if the backward phase should be run.
  '''
  items = list(data.items())
  random.shuffle(items)

  loss = 0
  num_correct = 0

  for x, y in items:
    inputs = createInputs(x)
    target = int(y)

    # Forward
    out, _ = rnn.forward(inputs)
    probs = softmax(out)

    # Calculate loss / accuracy
    loss -= np.log(probs[target])
    num_correct += int(np.argmax(probs) == target)

    if backprop:
      # Build dL/dy
      d_L_d_y = probs
      d_L_d_y[target] -= 1

      # Backward
      rnn.backprop(d_L_d_y)

  return loss / len(data), num_correct / len(data)

 现在,我们可以编写训练循环:

# Training loop
for epoch in range(1000):
  train_loss, train_acc = processData(train_data)

  if epoch % 100 == 99:
    print('--- Epoch %d' % (epoch + 1))
    print('Train:\tLoss %.3f | Accuracy: %.3f' % (train_loss, train_acc))

    test_loss, test_acc = processData(test_data, backprop=False)
    print('Test:\tLoss %.3f | Accuracy: %.3f' % (test_loss, test_acc))

 运行应该输出如下内容:main.py

--- Epoch 100
Train:  Loss 0.688 | Accuracy: 0.517
Test:   Loss 0.700 | Accuracy: 0.500
--- Epoch 200
Train:  Loss 0.680 | Accuracy: 0.552
Test:   Loss 0.717 | Accuracy: 0.450
--- Epoch 300
Train:  Loss 0.593 | Accuracy: 0.655
Test:   Loss 0.657 | Accuracy: 0.650
--- Epoch 400
Train:  Loss 0.401 | Accuracy: 0.810
Test:   Loss 0.689 | Accuracy: 0.650
--- Epoch 500
Train:  Loss 0.312 | Accuracy: 0.862
Test:   Loss 0.693 | Accuracy: 0.550
--- Epoch 600
Train:  Loss 0.148 | Accuracy: 0.914
Test:   Loss 0.404 | Accuracy: 0.800
--- Epoch 700
Train:  Loss 0.008 | Accuracy: 1.000
Test:   Loss 0.016 | Accuracy: 1.000
--- Epoch 800
Train:  Loss 0.004 | Accuracy: 1.000
Test:   Loss 0.007 | Accuracy: 1.000
--- Epoch 900
Train:  Loss 0.002 | Accuracy: 1.000
Test:   Loss 0.004 | Accuracy: 1.000
--- Epoch 1000
Train:  Loss 0.002 | Accuracy: 1.000
Test:   Loss 0.003 | Accuracy: 1.000

 

九. 结束

就是这样!在这篇文章中,我们完成了循环神经网络的演练,包括它们是什么、它们是如何工作的、为什么它们有用、如何训练它们以及如何实现它们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/236940.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【简易版】Linux下Protobuf 实现网络版通讯录--C++

一、介绍 该项目的主要目的是用于熟悉protobuf的使用,体验数据在网络中序列化反序列化的形式,并非一个完整的项目。 该通讯录只实现了增加联系人的功能。服务器端接收到请求后会将联系人的信息打印。 二、环境搭建 使用Httplib库,可以快速…

【ClickHouse】ClickHouse与MySQL之间实时同步数据(MySQL引擎),将MySQL数据实时同步到clickhouse

参考1:MySQL(通过该配置实现了实时同步) 参考2:experimental MaterializedMySQL 参考3:[experimental] MaterializedMySQL(包含设置 allow_experimental_database_materialized_mysql) MySQL引擎用于将远程的MySQL服务器中的表映射到ClickHouse中,并允许您对表进行I…

亚信科技AntDB携手蓝凌软件,助推企业数字化办公转型升级

随着企业数字化转型的深入,企业对于协同办公、移动门户、数字运营、智能客服等方面的需求越来越高,数智化正成为催生新动能和新优势的关键力量。数字化的办公平台可以帮助企业实现各类信息、流程的集中化、数字化和智能化管理,为企业管理者提…

2-7、转义字符

语雀原文链接 文章目录 1、转义字符2、\r\n的遗留问题3、System 1、转义字符 \r 回车,将光标定位在当前行的开头,不会跳到下一行。return\n 换行符,将光标定位在下一行的开头。newline 2、\r\n的遗留问题 我们在平时使用电脑时&#xff0c…

Mybatis是如何进行分页的?

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

WRF--修改geo_em.d01.nc中的变量,保持其他信息不变

WRF–修改geo_em.d01.nc中的变量,保持其他信息不变 首先呢,找到编译WRF过程中自带的读取nc的一个fortran函数:read_wrf_nc.f90 可以使用Linux命令: find / -name read_wrf_nc.f90 找到之后,修改这个文件&#xff0c…

镜头驱动芯片选型 GC6236,GC6208,GC6209的型号分析,多应用于摄像机镜头,家庭监控云台驱动等产品中

国产芯片GC6236,GC6208,GC6209 为5V摄像机镜头驱动芯片,电压范围在3~5.5(V),最大持续电流可达0.8(A)最高工作温度在-40~100之间。其特点都具有5V多通道,低噪步进电机驱动和霍尔自动光圈驱动等。可应用在摄像机镜头,家庭…

【SpringBoot教程】SpringBoot 统一异常处理(附核心工具类-ErrorInfoBuilder)

作者简介:大家好,我是撸代码的羊驼,前阿里巴巴架构师,现某互联网公司CTO 联系v:sulny_ann(17362204968),加我进群,大家一起学习,一起进步,一起对抗…

如何通过SPI控制Peregrine的数控衰减器

概要 Peregrine的数控衰减器PE4312是6位射频数字步进衰减器(DSA,Digital Step Attenuator)工作频率覆盖1MHz~4GHz,插入损耗2dB左右,衰减步进0.5dB,最大衰减量为31.5dB,高达59dBm的IIP3提供了良好的动态性能,切换时间0.5微秒,供电电源2.3V~5.5V,逻辑控制兼容1.8V,20…

访问控制列表ACL学习

ACL概念 ACL: ACL 是 Access Control List(访问控制列表)的缩写。它是一种用于管理和控制访问权限的机制或数据结构。ACL 用于确定谁可以访问特定资源(例如文件、文件夹、网络资源等)以及他们可以执行的操作。ACL 通常由一系列访…

基于SSM的高校共享单车管理系统的设计与实现论文

摘 要 网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。因此高校单车租赁信…

【UE5.1】Mixamo动画重定向到MetaHuman

前言 在上一篇博客(【UE5】初识MetaHuman)中我们创建一个MetaHuman角色,本篇博客在此基础上继续实现Mixamo动画重定向到MetaHuman角色的过程。 效果 步骤 1. 下载Mixamo动画资源(网盘链接:百度网盘)&…

算法分析与设计题目和参考代码

注&#xff1a;以下题目与代码来源于各种渠道 算法与分析设计 第0章 C常用函数与头文件1. 算法 #include \<algorithm\>2. 栈 #include \<stack\>3. 队列 #include \<queue\>4. 优先队列 #include \<queue\>5. map #include \<map\> 第一章 概论…

使用pe安装windows操作系统

一、系统安装前准备工作&#xff0c;制作系统盘 &#xff08;1&#xff09;拷贝电脑上的资料 &#xff08;2&#xff09;准备一个至少8G的U盘 &#xff08;3&#xff09;下载windows镜像文件及pe软件 通过百度网盘可下载下列软件及镜像 windows镜像文件&#xff08;百度网盘…

优化您的Mac电脑风扇控制体验 - 尝试Macs Fan Control Pro!

在日常使用Mac电脑过程中&#xff0c;我们经常会遇到电脑发热的问题&#xff0c;特别是在运行大型软件或进行高负载任务时。为了保护电脑硬件&#xff0c;一个高效且可靠的风扇控制软件是必不可少的。 Macs Fan Control Pro是一款专为Mac电脑设计的风扇控制软件&#xff0c;它…

大一作业习题

第一题&#xff1a;答案&#xff1a; #include <stdio.h> void sort(int a[], int m) //将数组a的前m个元素(从小到大)排序 {int i 0;for (i 0; i < m - 1; i){int j 0;int flag 1;for (j 0; j < m - 1 - i; j){if (a[j] > a[j 1]){int t 0;t a[j];…

第二节、项目支付功能实战-信息安全、支付安全、接口安全详解

信息安全的概念 提起信息安全&#xff0c;我们通常会想到&#xff0c;数据的传输安全、接口传输安全、登录认证、授权这些类型安全知识&#xff0c;同时也会想到&#xff0c;加密、解密、认证、加签、验签、安全证书等这些小而繁琐的复杂概念&#xff0c;一说起这些概念&#…

Caching the Application Engine Server 缓存应用程序引擎服务器

Caching the Application Engine Server 缓存应用程序引擎服务器 Application Engine caches metadata just like the application server. This caching enhances performance because a program can refer to the local cache for any objects that it uses. 应用程序引擎…

网工内推 | 项目经理专场,最高20K*13薪,软考证书优先

01 Trasen 招聘岗位&#xff1a;大项目经理&#xff08;医疗行业/HIS&#xff09; 职责描述&#xff1a; 1.负责项目按计划完成交付并顺利验收结项&#xff1b; 2.参与项目前期预算、评审、方案设计等&#xff1b; 3.负责具体项目实施&#xff0c;制定项目计划、组织项目资源、…
最新文章