腾讯科技Hi Tech Day暨2023数字开物大会:智能涌现将通往无数的未来

腾讯科技讯 12月14日,以“智能涌现 数开万物”为主题的腾讯科技Hi Tech Day暨2023数字开物大会在北京国家会议中心召开,腾讯科技邀请知名院士、知名经济学家、知名大学教授、研究院院长、产业大咖、互联网大厂高管、知名科技领域头部企业高管、产业数字化转型企业高管等共话AI趋势。

大会开场,腾讯新闻运营总经理黄晨霞发表主办方致辞。她回顾了2023年新技术的涌现发展,并提出如何让这些新技术打开真正的产业变革之门,为人类社会创造更多的福祉的思考。黄晨霞表示,在应用落地的路上,我们要厘清大模型的基础还有哪些卡点、AI与产业结合的可能性以及AI产品的潜在形式。

在本次大会上,与会嘉宾们首先通过主题演讲,从算力、数据、治理这几项AI基础设施议题出发,对中国大模型产业的地基现状和未来目标展开了深入剖析与分享。

演讲主题覆盖算力瓶颈的解决路径、数据共享的基本框架、数据治理的核心卡点。在大会的第二篇章,业界人士、投资人及专家深入大模型落地的过程,拆解变革发生的形式和产业落地的具体方法,通过三场圆桌论坛,嘉宾们围绕AI对产业和用户带来的种种潜在影响和可能性各抒己见。

无限可能:今天涌现的信息会通往无数的未来

“如何让这些今年新涌现出的技术打开真正的产业变革之门,进一步为人类社会创造更多的福祉?这个问题潜藏着太多可能性和模糊之处。” 这正是这次问题探讨的契机,即通过嘉宾的讨论去厘清2023年爆发的新技术在未来的可能性。

腾讯新闻运营总经理黄晨霞认为,2023年的技术进步“不同寻常”,可以称为新一轮工业革命的起点。针对当下展现出无穷潜力的AI技术,她提出了三个问题:“通往AGI的路上,我们还需要迈过哪些障碍?“、”大模型将如何嵌入行业?“以及“AI所带来的前所未有的能力将带来什么产品上的可能型”。

针对大家面对新技术时的矛盾心态,黄晨霞认为焦虑可以理解,但不应导向贸然行动,而是应该更深入地进行思考。对于复杂问题的解法,黄晨霞表示,虽然我们面对的着诸多的挑战,但在讨论这些问题的过程中,涌现的信息会通往无数的未来。

2023年对于科技产业和人类未来的特殊意义,科智集团董事长、数字开物创始人黄超在主办方主题演讲中也表示,2023年是全球数字科技领域重要的变革之年,也是中国数字经济笃定前行的提速之年。在这样的科技革新背景之下,数字化正在成为中国经济社会一种变革性力量。

AI算力:中国已经有了能和A100对标的GPU生产能力

针对AI发展的硬件基石:算力的构建,国资委科技强国智库专家委员会主任、中国科学院教授廖奇为发表“中国芯赋能智能算力,助力数字经济高质量发展”的主题演讲,分享了目前国内解决算力瓶颈的最新实践和进展。

进入AI时代,GPU和广义AI芯片逐渐取代CPU成为算力发展的核心。在中美大国博弈、芯片出口限制层层加码的环境下,中国如何在GPU的研发和制造方面破局? 廖奇为认为,广义的算力才决定了一个国家未来真正的竞争实力。

除了硅基芯片以外,中科院目前还有几个方向正在推进,包括量子芯片、仿生神经网络芯片的设计。但廖奇为也强调称,中国已经有了自己的GPU设计生产能力,并进行了产业化的布局。经过其团队的努力,已经突破自主RPP架构技术难关。其团队“通过14纳米常规的GPU工艺生产出的芯片,已经可以与NVIDIA的A100对标。作为一种低能耗、低成本、高集成的解决方案,该GPU跟NVIDIA同类芯片相比,边缘计算甚至可以达到1/27的能耗比。”廖奇为还表示,这一GPU芯片的第二代正在进一步研发,很快就会流片。

数据:只有安全流通的数据才有价值

数据是AI发展的另一个重要基石。近日微软发布的最新小模型Phi-2就通过优化数据供给,使其能力提升至比它大25倍的大模型同等的水平。而中文数据在大模型发展中的利用还远未达到充分。

对此,中国人民大学交叉科学研究院院长、教育部长江学者、特聘教授杨东教授发表了主题演讲“从数据大国到数据强国:数据要素在经济发展中的角色”,试图厘清中国数据应用方面的诸多卡点,并竖起了向数据强国转换的道标。

针对大模型为何没有在中国最早出现的问题,杨东指出,过去移动互联网时代,中国存在严重的数据风险主义。为什么大模型不能及早地产生和发展?主要原因不在于算力,也不在于算法,在于数据没有互联互通。

为了解决数据垄断,开放共享度低的问题,杨东提出,要建立基于三权的数据收益分配机制。 针对目前来自用户的数据确权困难问题,杨东将其比喻为数字时代的“土改”,要让数据变成“能够获得价值的利益公平合理地分配给多元的流通主体”。这样无论是个人、企业还是政府,都可以在数据价值创造过程中做出贡献,获得收益分配。针对数据的重要性,杨东表示“十年后的今天,数据要素层可能会成为我们的主体和根本的未来经济发展的核心驱动力量”。[1] 

数据流通的基础是数据安全。只有在保障隐私和版权的基础上,产生于每个用户的数据才能被放心地使用和商业化。

对此,中国信息通信研究院云大所大数据与区块链部主任姜春宇在此次大会上发表了主题为“AI数据治理发展思考”的演讲。

针对安全和隐私的风险、生成内容、合成内容如何管理、大模型的幻觉问题这些数据应用中的核心风险点,姜春宇表示需要构建全生命周期的数据安全与隐私的保护能力,覆盖整个训练过程。

针对幻觉问题,“不同的领域真实性、准确性可以有些规则约束,内容生成要求、监测机制和真实性评估,有害性问题可以通过内容识别和过滤自动检测+人工审核”,但目前国内这些领域都处于空白阶段,亟需被完善。

据姜春宇表示,信通院正在撰写一本人工智能数据治理的白皮书,目的就是建立这一领域的方法和规则体系。

除了安全方面的提升,姜春宇还强调了数据质量的价值:没有好的数据,模型的能力肯定会有所欠缺。目前的现状是国内IT发展路径是先污染后治理,所以质量普遍偏差,需要有数据质量相关的评价维度变化,提升数据质量的工艺和工程能力需要加强。

AI+产业:渐进式创新在B端落地,颠覆式创新在C端大放异彩

在解决大模型基础问题的同时,产业方面的应用和实践已经被提上日程。在这一新技术所展现出的强大可能性之时,整个产业将如何被改变可能是当下一般企业最为关注的问题。对此,竹间智能总裁兼COO孙彬在“AI大语言模型爆发的产业变革”的发言中,分享了他作为AI变革一线企业家的见解。

孙彬表示,大语言模型把生产力的三要素解决了,因此它一定会在To B端带来被使用的生产力。这一生产力后续的承载模式就是以大语言模型为基础的数字员工,它是成本和效率完美的结合体。因为大模型能为企业提效,谁也无法阻挡这一趋势。孙彬认为“作为甲方和行业从业者都应该记住,不能变成大模型的业务不是好业务。”

对于企业使用AI大模型,孙彬建议采用外部购买和联合建设的方式,如果不是行业头部企业,没有自己足够的IT开发实力的企业,不建议去做自研开发。对于大语言模型未来的发展,孙彬认为,它会变成大家的工作依赖、能力依赖和生活依赖,就像现在手机成为大家的依赖一样。

由AI可能搅乱自己的工作和生活引发“AI焦虑症”在今年从企业家到职员间都开始流行,焦虑的根本就在于害怕被新技术颠覆。对此,昆仑万维董事长、CEO方汉先生,英诺天使基金合伙人王晟以及腾讯科技《AI未来指北》栏目主理人郭晓静就“生成式AI的爆发会带来颠覆式的创新还是渐进性迭代?”这个问题展开了讨论。

对于AI带来的颠覆,王晟表示,一个新的技术范式从产生到变得成熟有其时间点,明年可能是应用的元年。但今年绝对不是这个时间点,今年是Infra(基础设施)之年。他进一步说明,AI和产业的结合并非刚刚开始,大模型只是拓宽了融合可能,但在业务模式未改变的情况下,这种进步依然会是渐进的。

对此,方汉补充说:“渐进式创新会在B端落地比较快,颠覆式创新是在C端大放异彩。”他认为AI这波浪潮一定会从小企业中诞生新的C端巨头。

对于最近广受讨论的AI Native(AI原生)这个概念,两位嘉宾也表达了非常明确的观点。方汉认为“AI Native完全是一个伪命题。“王晟则认为AI就是一个工具,也是过去应用的延伸,和Native关联有限。

AI+工业:并非所有企业都需要,落地要靠专家模型

对于很多走得更快的公司而言,AI早已是一个非常熟悉的概念,大模型的出现更多的,是带来了AI能力的跃迁和形式的变化。因此面对这次AI浪潮,他们可能已经有了比较明确的路线和思考。但对于制造业来讲,大模型这个概念更加陌生和遥远。上一波数字化变革还没有消化完全,就要面对新的技术范式转变。是否要变,何时要变是制造业从业者面对的第一个难题。

虽然AI带来的数字化转型趋势已经非常明显,但作为企业应该如何落地,行业中目前主流的解决方案是什么?思谋科技SmartMore联合创始人刘枢作为AI在工业实践中实践者,通过“IndustryGPT:工业大模型的实践与思考”的主题演讲,提供了他的解决方案。

刘枢表示,通用大模型虽然已经很好,但面对专业领域、专业知识还是相对匮乏的,能力也是需要提升的。因此在真正工业场景落地的时候,还需要对应的模型,也就是IndustyGPT。

解决专业知识的方式就是提供只有行业才有的专业数据。在训练IndustryGPT的时候,刘枢的团队收集了大概500亿Tokens的原始数据,相当于10万个博士的阅读量[2] [3] 。除此之外,为了应对工业具体的场景,他们精简了上下文长度,让模型的输出更符合操作的要求。

为让业界更了解AI与制造业融合的前沿观点,中国工业互联网研究院智能所副所长顾维玺、北京信息化和工业化融合服务联盟理事长闫同柱、中工互联科技集团董事长智振与腾讯云智能制造首席专家邴金友带来一场精彩的主题对话:“大模型是制造业数字化转型方向的必选项吗?”

闫同柱表示,对不同的企业大模型的意义也有所不同。高端制造业积极拥抱是因为高端制造业本身对知识的要求比较密集,大模型起到的是优化作用,有比较大的价值。但传统制造业来说,它的数据量不大,而大模型的门槛相对比较高,投入产出比并不那么明确。

腾讯云智能制造首席专家邴金友认为,工业企业在接纳大模型方面存在两个问题,一是成本问题,数据散,模型训练成本高;二是幻觉问题,工业里面要么是经济产出,需要100%正确,大模型难以达成。

针对邴金友提到大模型的幻觉问题,中工互联科技集团董事长智振表示,现在工业大模型已经能够做到的专家系统100%无害化,90%以上的准确度。具有落地的基础。

虽然现阶段大模型并不能适用所有工业场景,但其擅长的场景已经有了很多落地的实例。邴金友表示,在客服,流程管理、人力资源、营销、内容产出和设计方面大模型的使用已经有了广泛的实践。

对于大模型对工业的意义,闫同柱还提出了另一个角度,他表示中国工的工业知识和工业数据在很多地方都因为人才离职被遗失了,并没有转化为企业的知识资产,所以很多创新都是在重复造轮子,但大模型的出现可以更有效的将经验数据转化为可用的知识资产。

AI+产品:AI会解决关键节点问题,图像处理类应用可能出西安首个爆款

自从大模型诞生之始,GPT会替代搜索,文生图软件将重塑摄影绘画软件等预测就一直不绝于耳。但现在看到的更多的是融合而非颠覆,大模型和各个应用场景的关系更多变成了互相融合,融合也是一种改变,对于想寻找机会的创业者来讲,抓住被AI改变最大的场景,就可能寻到一片新的蓝海。

腾讯科技创作者胡俊、昆仲资本投资副总裁陈希、清华大学交叉信息学院助理教授袁洋、木牛机器人CEO郭林与腾讯科技创作者、互联网基金公司AI业务负责人张仁杰在对“哪些应用场景最先被AI改变”的讨论中开始了一场AI机遇的富矿勘察。

陈希先分析了AI的产业图景,他把AI分成了三层:基础大模型层、中间层和应用层,基础大模型层是壁垒最高的,应用层是最有发展机会的。

应用层有哪些机遇?袁洋认为,大模型更擅长system1的思维方式,但现在通过对大模型思维流程的调整,更复杂的领域,如医疗、教育和法律也有被覆盖的可能。这些领域的价值是很高的。郭林认为,在场景落地中AI解决不了所有问题,但会解决关键节点问题。

与过往的产品不同,大模型的场景覆盖更广。陈希表示,大模型时代产品的特点就是没有办法特别明确地说To C还是To B,它既能让C端用户玩起来,也能够在B端产生价值。同时,这也是张仁杰在试用过市面上比较火的AI产品后的感受。在Killer App的现状和未来方面,他认为ChatGPT在海外已经算是Killerapp了,但国内还没有。这主要是因为国内普通用户的使用场景很难跟AI结合。对于未来,他认为普通C端用户对图像处理类应用有更强需求,可能会出现第一个爆款。

深度学习之父辛顿曾说过:创造真正智能机器的旅程是漫长而富有挑战性的,但这是一段值得走的旅程。同样,应用智能机器的旅程也并非一朝一夕能够走完,但拥抱新技术是我们超越现在和自己,迈向未来的值得走的旅程。路也许还模糊不清,但先行者走的多了,就有了路。腾讯科技Hi Tech Day,邀请你一起通往无数个可能的未来。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/248495.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络协议 - UDP 协议详解

网络协议 - UDP 协议详解 UDP概述UDP特点UDP的首部格式UDP校验 參考文章 基于TCP和UDP的协议非常广泛,所以也有必要对UDP协议进行详解。 UDP概述 UDP(User Datagram Protocol)即用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种…

【Spark精讲】Spark与MapReduce对比

目录 对比总结 MapReduce流程 ​编辑 MapTask流程 ReduceTask流程 MapReduce原理 阶段划分 Map shuffle Partition Collector Sort Spill Merge Reduce shuffle Copy Merge Sort 对比总结 Map端读取文件:都是需要通过split概念来进行逻辑切片&…

dbeaver导出数据为excel格式

dbeaver导出excel 目前数据的可选择只有这几种 恰好没有我们需要的excel模式,而我们需要数据一般都需要excel的 所以我们可以通过以下步骤得到我们的excel格式的数据集: 1.直接选csv模式,至于csv有陌生的小伙伴可以理解:CSV(Comma-Separated Values)是…

同时获取el-select的label和value

ui如下: 需求如下: 在点击确认的时候,将id和name都传给一个接口,但是ui只用展示name,name用v-model绑定给input框,但是id不知道怎么传给后端。 解决方法如下: vue中elementUi的el-select同时…

解决kernel32.dll丢失的修复方式,kernel32.dll预防错误的方法

kernel32.dll文件是电脑中的一个重要文件,如果电脑出现kernel32.dll丢失的错误提示,那么电脑中的一些程序将不能正常使用,那么出现这样的问题有什么解决办法呢?那么今天就和大家说说解决kernel32.dll丢失的修复方式。 一.kernel32…

MySql踩坑记录 DATE_FORMAT函数

使用场景:进行某一日期范围内的数据查询 查询结果:空,查询不到符合条件的数据。 Sql展示: SELECTa.dt_plan AS planDate,a.sd_status AS planStatus FROMc_hpl_plan a WHEREa.id_phr 6576727112f1a21849639530 -- 第一种写法…

STM32 寄存器配置笔记——I2C 读写AT24C02 EEPROM

一、简介 本文主要介绍STM32F10xx系列如何使用软件模拟I2C总线读写AT24C02的EEPROM数据。 二、概述 I2C协议是一种用于同步、半双工、串行总线(由单片机时钟线、单数据交换器数据线组成)上的协议。规定了总线空闲状态、起始条件、停止条件、数据有效性、字节格式、响应确认信号…

c# 为什么修改Font导致Location 变化

搜索引擎、各种人工智能,只有这个帮我解决了问题 然后我发现了这个 我就奇怪,一行行调试代码,最终发现设置Font,Location就变了,完全想不通

Linux 创建分区

要求 分一个区就行,用 ext4 文件系统,挂到 /data 目录。 查看 lsblk sdb 没有分区 创建分区 [rootlocalhost ~]# ll /dev/sd* brw-rw----. 1 root disk 8, 0 2月 27 15:10 /dev/sda brw-rw----. 1 root disk 8, 1 2月 27 15:10 /dev/sda1 brw-rw-…

【vue】jenkins打前端包时报错:第 8 行:cd: dist: 没有那个文件或目录

问题描述 jenkins打前端包时报错:第 8 行💿 dist: 没有那个文件或目录 Jenkins中 “Execute shell” 配置的脚本: echo $PATH node -v npm -v npm config set registry http://ued.edtsoft.com/ npm install npm run build:prod cd dist rm…

PostgreSQL向量数据插件--pgvector安装(附PostgreSQL安装)

PostgreSQL向量数据插件--pgvector安装 一、版本二、数据库安装1. 在官网下载PostgreSQL14.0的安装包2.增加用户postgres3.解压安装 三、pgvector安装1. 从github上克隆下来2. 安装pgvector插件3. 开始使用pgvector启用pgsql命令行创建扩展 本文为本人在安装pgvector中踩过的坑…

Github2023-12-15 开源项目日报 Top10

根据Github Trendings的统计,今日(2023-12-15统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量TypeScript项目3非开发语言项目3JavaScript项目1Python项目1Rust项目1PHP项目1 基于项目的学习 创建周期&am…

【通用】Linux,VSCode,IDEA,Eclipse等资源相对位置

正文 不论是 IDEA、Linux、VSCode、cmd等等吧,都遵循这个规则: 如果以斜杠开头,表示从根开始找: IDEA的根是classpath(classpath就是项目被编译后,位于 target下的 classes文件夹,或者位于ta…

QT笔记(节选)具体图片等下载资源

QT笔记(节选)具体图片等下载资源 根据b站视频做的笔记: https://www.bilibili.com/video/BV1g4411H78N?p44&spm_id_frompageDriver&vd_sourcea3e6a48ccd3d7d1f969f662653ed68c9 qt是一个跨平台的c图形用户界面应用程序框架&#x…

编程导航算法通关村——算法基础

目录 1. 时间复杂度 1.1. 时间复杂度概念 1.2. 几种常见的阶 1.2.1. 常数阶 O(1) 1.2.2. 线性阶 O(n) 1.2.3. 平方阶 (n) 1.2.4. 对数阶 O(logn) 2. 最坏情况和平均情况 3. 空间复杂度 1. 时间复杂度 1.1. 时间复杂度概念 当我们说算法的时间复杂度时,我们…

【动手学深度学习】(十四)数据增广+微调

文章目录 一、数据增强1.理论知识2.代码 二、微调1.理论知识 一、数据增强 1.理论知识 增加一个已有数据集,使得有更多的多样性 在语言里面加入各种不同的背景噪音改变图片的颜色和形状 使用增强数据训练 翻转 左右翻转上下翻转 不总是可行 切割 从图片中切…

【数据结构和算法】判断子序列

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一:双指针 三、代码 3.1 方法一:双指针 3.1.1 Java易懂版:…

解决Chrome同一账号在不同设备无法自动同步书签的问题

文章目录 一、问题与原因?2. 解决办法 一、问题与原因? 1.问题 使用谷歌Chrome浏览器比较头疼的问题就是:使用同一个Google账号,办公电脑与家用电脑的数据无法同步。比如:办公电脑中的书签、浏览记录等数据&#xff0…

drf入门规范

一 Web应用模式 在开发Web应用中,有两种应用模式: 1.1 前后端不分离 1.2 前后端分离 二 API接口 为了在团队内部形成共识、防止个人习惯差异引起的混乱,我们需要找到一种大家都觉得很好的接口实现规范,而且这种规范能够让后端写…

Tomcat部署与调优

目录 前瞻 什么是tomcat? 什么是servlet? 什么是JSP? Tomcat功能组件结构 Container结构分析 Tomcat请求过程 Tomcat服务部署 1.关闭防火墙,将安装 Tomcat 所需软件包传到/opt目录下 2.安装JDK 3.设置JDK环境变量 4.安装启动Tomc…